
MATH 254: ORDINARY DIFFERENTIAL EQUATIONS

1. Introduction

Until now, you usually studied algebraic equations, such as: x2 − 2x+1 = 0. In
this case the unknown is x, and its solutions are numbers. Differential equations
are different. The unknown quantity in a differential equation is a function (that
can represent many different things). A differential equation is an equation that
involves derivatives of the unknown function. Recall that the derivatives are the
rate of change of a quantity, so a differential equation is an equation that relates
the rate of change of a certain quantity to the quantity itself.

1.1. Examples.

• Hooke’s law: mẍ = −kx. Here x is in fact a function of time x(t).
The function x is called the dependent variable (as it depends on time t)
and t is called the independent variable.

• Newton’s law of universal graviation: mẍ = −GMm
x2 .

• Newton’s second law: mẍ = F . In most cases, the force F is a function of
the position x and the velocity v = ẋ of the particle. So mẍ = F (x, ẋ).

The order of a differential equation is the order of the highest derivative it contains.
So the last three examples are all second order ordinary differential equations.

• The simplest differential equation is dy
dx=0. Its solution is y = const. Notice

that here y is the unknown quantity and it is a function of x. This is a first
order differential equations.

• Radioactive decay of a material (with amout A) is modeled by the equation
dA
dt = −kA where k > 0 is a constant. This is a first order differential
equations.

• Vibrating string is modeled by the equation ∂2u
∂t2 = c2 ∂2u

∂x2 . In this case there
are partial derivatives, and the independent quantity is a function of time
t and space x, so u = u(t, x). This is a second order partial differential
equations.

We will only concentrate on ordinary differential equations (ODE) in this class, and
not partial differential equations (PDE).

There are other ways of classifying differential equations. One type of equation is
a linear equation, it is an equation that depends linearly on the dependent variable.
For example:

• The equation d2y
dx2 +y = 0 is a linear equation, but the equation d2y

dx2 +y
3 = 0

is a nonlinear equation.

• Don’t get confused, the equation d2y
dx2 + y = x3 is a linear equation! This is

because it is linear in y (the term x3 is nonlinear, but it is the independent
variable so it doesn’t affect whether the equation is linear or not)

More examples:

• x2 d2y
dx2 + x dy

dx + y = x3: Second-order, x independent, y dependent.
1
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•
√

1− d2y
dt2 − y = 0: Second-order, t independent, y dependent.

• d4x
dt4 = xt: Fourth-order, t independent, x dependent.

1.2. Solutions of ODEs.

• The function y(x) = x2−x−1 is a solution of the linear equation d2y
dx2 −

2
x2 y =

0.
• For any choice of constants c1, c2 the function y(x) = c1e

−x + c2e
2x is a

solution of y′′ − y′ − 2y = 0.
• There are also implicit solutions, for example the equation 8x − 2y dy

dx = 0

is solved implicitly by the relation 4x2− y2 = C. It is still called a solution
because we got rid of all derivatives in the equation.

Notice that the second equation had two constant (and it was a second order equa-
tion). The third equation had one constant, and it is a first order equation. The
general solution of an n-th order equation has n constants (that come from n inte-
grations we have to make to solve the equation).

In real life situations the constants are usually known. For example, let’s say that
we want to solve the equation ẏ = sin 2t. Integrating we see that y = − 1

2 cos 2t+ c.
If we know the value of the function at a certain time (usually called the initial
time), we can find the value of the constant. For example, the equation can be
supplemented with the initial condition y(0) = 0. Then − 1

2 + c = 0 and c = 1/2.
The problem of solving the ODE together with the IC (initial condition) is called
an initial value problem. An nth order ODE should have n initial conditions at a
given point (more about this later on).
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2. 1st Order Equations

In this chapter we study first order equations, that can generally be written in
the form dy

dx = f(x, y).

2.1. Direction Fields. Draw and explain the direction fields of:

• y′ = 0
• y′ = 1
• y′ = y

Show Wolfram demonstration. Explain in terms of the initial value formulation for:

• y′ = 1, y(0) = 1.
• y′ = y, y(0) = 0.
• y′ = y, y(0) = 1.
• dA

dt = −kA for k > 0. Explain physics of this decay model a bit.

2.2. Separable Equations. A general first order equation can also be written in
the form M(x, y) + N(x, y) dydx = 0 (for example by setting M = −f,N = 1). A
separable equation is an equation for which M only depends on x and N only
depends on y, namely: M(x) + N(y) dydx = 0. Such equation is called separable
because it can be solved easily by separating the two variables. We write the
equation as M(x)dx = −N(y)dy and integrate (the left-hand side w.r.t x and the
right-hand side w.r.t y). By the way, it is not always legitimate to multiply by a
differential such as dx, but in this case, it’s possible to proof that it’s fine so we
just won’t worry about it. Let’s see some examples:

• Initial Value Problem: dy
dx = 3x2+4x+2

2(y−1) , y(0) = −1

We can rewrite it in a separable form as 2(y − 1)dy = (3x2 + 4x + 2)dx,
integrating gives y2 − 2y = x3 + 2x2 + 2x + c, and the initial condition
gives c = 3. This is of course an implicit solution. It can be turned into an
explicit solution by solving for y.

• Initial Value Problem: dy
dx = y cos x

1+2y2 , y(0) = 1

We write it as 1+2y2

y dy = cosxdx, and integrate to get ln |y|+y2 = sinx+1

using the initial condition. This is again an implicit solution.
• dy

dx = y, we continue as before to write dy
y = dx. Here we cannot divide by

y if y = 0, which is a solution that we need to remember. Integrating we
see that ln |y| = x+C, or y = Cex. Notice that the case C = 0 corresponds
to the other solution we found before.

• dy
dx = y−1

x+3 , y(−1) = 0 gives y(x) = − 1
2 (x+ 1) in the same way.

2.3. Linear Equations. A linear equation is such that f(x, y) is linear in y, so we

can write dy
dx + p(x)y = g(x). How can we solve such an equation?

Ex: let’s start with the simple case y′ + ay = 0. In this case we can see by
inspection that y is a function whose derivative is −a times the original function,
so we can guess y(x) = e−ax. More generally, the solution is y(x) = Ce−ax. What if
now, we want to solve: y′+ay = g(x)? In this case, if we can identify the left-hand
side as the derivative of something, then the equation gets the form d

dx(∗∗∗) = g(x),
and can be integrated immediately. To understand how this can be done, consider
the solution we found before y = Ce−ax. If we write it in the form yeax = C, we
see that d

dx(ye
ax) = 0, which is exactly eax( dydx + ay) = 0. This is nothing other

than the original equation but multiplied by eax.
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Therefore we may write eaxy′ + aeaxy = eaxg(x), or d
dx(e

axy) = eaxg(x), and if

g(x) is known this can be integrated to give y(x) = e−ax
´ x

eatg(t)dt+ ce−ax.
Let’s see an actual example: y′ + 2y = e−x, with y(0) = 3/4. We multiply by

e2x, and continue to obtain y = e−x − 1
4e

−2x.

The general scheme. Consider y′ + p(x)y = g(x). We want to find a function
µ(x) (an integrating factor) such that µ(x)[y′ + p(x)y] = [µ(x)y]′. Expanding the
right-hand-side, we see this is only possible if µ′(x)/µ(x) = p(x) (for µ > 0), so
this function is nothing other than µ(x) = exp

´ x
p(t)dt (and µ is indeed positive.

Since the integral of p is determined up to an additive constant, µ is determined
up to a multiplicative constant and the sign is insignifcant.) Therefore µ(x)y =
´ x

µ(t)g(t)dt+ c and this gives us y as being y(x) = 1
µ(x) [
´ x

µ(t)g(t)dt+ c].

More example:

• y′−2xy = x, y(0) = 0. We want an integrating factor µ(x) = exp−
´ x

2tdt =

e−x2

. So (e−x2

y)′ = xe−x2

and by integrating we see that y = −1/2+ cex
2

.
The initial condition gives c = 1/2.

• y′ + 3y = x+ e−2x

• y′ + y = xe−x + 1
• y′ − y = 2ex

• 1
x

dy
dx − 2

xy = x2 cosx, x > 0. Here the integrating factor is x−2, which gives

a solution y = x2 sinx+ Cx2.

Existence and Uniqueness. The most important application of differential equations
is to use them to predict to future of whatever quantity they represent. As we said,
this usually means that we need to know the initial value of the quantity at the
present. This is not always possible, namely, there are differential equations with
which we can use to predict the future. In this case of linear equations, there are
conditions under which a unique solution exists:

Theorem 1. Uniqueness and Existence Theorem: if the functions g and p are
continuous on an open interval containing the point x = x0, then there exists a
unique solution y = y(x) for the initial value problem y′+p(x)y = g(x), y(x0) = y0.

Although this might seem trivial, it is not the case. The following are nonlinear
pathological examples:

• y′ = y1/3, y(0) = 0.
Using separation of variables, we see that y = (23x)

3/2 solves the problem

for x ≥ 0. On the other hand, also y = −(23x)
3/2 solves it for x ≥ 0. In

fact, also y(x) = 0 is a solution...
It is possible to show that in fact this problem has infinitely many solutions,
and is therefore useless as a physical model. If the initial value doesn’t lie
on the x axis, one can show that there is a unique solution.

• y′ = y2, y(0) = 1. A solution to this problem is y = 1
1−x . Clearly, this

solution is undefined as x→ 1 and is therefore only valid for x < 1 (there is
no indication for this feature in the ODE itself). Normally, the singularities
appear whenever there are factors containg x that vanish in the equation.

2.4. Exact Equations. Consider the equation ψ(x, y) = c. Differentiate with
respect to x (assuming y = y(x)) gives the ODE ψx(x, y) + ψy(x, y)y

′ = 0. Con-
versely, gives the ODE M(x, y) + N(x, y)y′ = 0, when can go back to the first
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equation we wrote? This will of course be an implicit solution. For that, we need
ψx = M and ψy = N to be satisfied. An equation that satisfies that, can be writ-

ten as d
dx [ψ(x, y(x))] = 0 and is therefore called an exact differential equation. In

practice, people often write the equations as M(x, y)dx+N(x, y)dy = 0.
Examples:

• 2xy3 + 3x2y2 dy
dx = 0 is exact, since d

dx (x
2y3) = 0. Therefore y = kx−2/3 is

a solution for x 6= 0. k = 0 corresponds to the solution y = 0.

• dy
dx = − 2xy2+1

2x2y . This equation can be written as (2xy2+1)dx+2x2ydy = 0,
2xy2+1
2x2y dx + dy = 0, dx + 2x2y

2xy2+1dy = 0, etc... What makes it easier to

solve it? How can we know how we should write it to have it as an exact
equation?

Theorem 2. (Test for exactness) If the partials of M(x, y) and N(x, y) are con-
tinuous in a rectangle, then M(x, y)dx+N(x, y)dy = 0 is exact in the rectangle if
and only if ∂M

∂y = ∂N
∂x .

Back to the examples:

• We see that in our case the first equation (2xy2+1)dx+2x2ydy = 0 satisfies
the test, and then x2y2 + x = const is the solution.

• (y cosx+2xey)+(sin x+x2ey−1)y′ = 0 has a solution y sinx+x2ey−y = c
• (2xy−sec2 x)dx+(x2+2y)dy = 0 is exact with solution x2y−tanx+y2 = C
• (3x2 + 2xy) + (x + y2)y′ = 0 is not exact, try to find a solution in the

method described above, and you’ll see it’s impossible.

Integrating Factors. Sometimes, even when the equationM(x, y)dx+N(x, y)dy = 0
is not exact, we can try to choose a function µ such that µMdx+µNdy = 0 is exact.
The condition for this is of course that (µM)y = (µM)x. Unfortunately, there is no
general way to determine an integration factor, this can sometimes be as difficult
as solving the original ODE. Normally, we make an Ansatz for it and check if it
works. Notice that the integrating factor satisfies Mµy −Nµx + (My −Nx)µ = 0,

so if it is a function of x only, we see that dµ
dx =

My−Nx

N µ. Similar argument can
work for µ as a function of y only. Examples:

• (y2 + xy)dx − x2dy = 0 is not exact, but you can check that µ = (xy2)−1

is an integrating factor that gives the solution ln |x|+ x/y = c for x, y 6= 0.
y = 0 is another separate solution.

• (x + 3x3 sin y)dx + (x4 cos y)dy = 0 is not exact, but its integrating factor
is x−1 gives an implicit solution x+ x3 sin y = C.

• (3xy + y2) + (x2 + xy) dydx = 0 is not exact, but notice that
My−Nx

N = 1
x , so

that dµ
dx = µ

x hence µ = x. This gives the solution x3y+ 1
2x

2y2 = const. In

this problem the function µ = 1
xy(2x+y) is also an integrating factor.

2.5. Homogeneous equation. Consider the following equation dy
dx = y2+2xy

x2 . It
is not separable, linear or exact. There also isn’t any obvious integrating factor. It
leads to another method for solving ODEs, change of variables. Change of variables
may simplify the equation to an equation that is easier to solve. In this chapter,
we’ll look at first order homogeneous equations: dy

dx = F ( yx). Such equations can

be solved by the change of variables v = y/x, (y = xv) and then dy
dx = v + x dv

dx ,

or dx
x = dv

F (v)−v . Namely, it’s always possible to separate a homogeneous equation.
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Note however that it’s not always possible to evaluate the integral on the right-
hand-side. Examples:

• dy
dx = y2+2xy

x2 This is a homogeneous equation since we can write dy
dx =

( yx)
2 + 2 y

x . After the change of variable we get dx
x = dv

v(v+1) . Using partial

sums, dx
x = ( 1v − 1

v+1 )dv so cx = v
v+1 . Substituting y = vx back, we get

cx = y
y+x , or y = cx2

1−cx .

More Problems.

• y′ + 1
xy = 3 cos 2x, x > 0 (linear).

• xy′ + 2y = sinx, x > 0 (linear).
• (1 + x2)y′ + 4xy = (1 + x2)−2. (linear)
• xy′ + 2y = x2 − x+ 1, y(1) = 1/2. (linear)
• y′ = −x/y ⇒ x2 + y2 = c2 (separation of variables). Solutions are circles.

• y′ = x−e−x

y+ey (separable)

• y′ = 1 + x+ y2 + xy2 (separable)
• dr

dθ = r2/θ, r(1) = 2 (separable)

• (3x2 − 2xy + 2)dx+ (6y2 − x2 + 3)dy = 0 (exact)

• xdx
(x2+y2)3/2

+ ydy
(x2+y2)3/2

= 0 (exact)

• (y/x+ 6x)dx+ (lnx− 2)dy = 0, x > 0 (exact)
• x2y3 + x(1 + y2)y′ = 0, µ(x, y) = 1/xy3 is an integrating factor
• ydx+ (2x− yey)dy = 0, µ(x, y) = y is an integrating factor
• (x+ 2) sin ydx+ x cos ydy = 0, µ(x, y) = xex is an integrating factor.

• dy
dx = x2+3y2

2xy (homogeneous)

• 2ydx− xdy = 0 (homogeneous)
• (x2 + 3xy + y2)dx− x2dy = 0 (homogeneous)

2.6. Applications and Modeling Problems.

2.6.1. Physics. Newtonian Mechanics:
Newton’s 2nd law F = ma, relates the acceleration of the body to the forces acting
on it. Here the force is in Newton, the mass in kilograms and the acceleration in
meters per second squared.
In the case of the force of gravity, the force is given by Newton’s inverse-square law
of gravitational attraction. If R is the radius of the earth, and x is the altitude above
sea level, then F = − GMm

(R+x)2 = −GMm
R2

1
(1+ x

R )2 . We denote g = GM/R2 = 9.81m
s2 ,

and notice that for x/r ≪ 1, we can write F = −mg(1 − 2 x
R + . . . ). So in the

vicinity of the earth’s surface, bodies obay the following equation ma = mg, or
ẍ = g. Notice that so far we neglet frictional forces (like the resistance due to air).

• Throwing a ball in the air (neglecting air resistance), from the earth surface
at a velocity of v0 m/s: We know ẍ = −g, so x(t) = − 1

2gt
2 + v0t. Show

Galileo’s experiment.
• Motion of a parachuter: mdv

dt = mg − kv, or dv
dt +

k
mv = g. This is a linear

equation with an integrating factor exp(kt/m). The solution is v = mg
k +

c1e
−kt/m. If the parachuter starts at rest, v(0) = 0 and v = mg

k (1−e−kt/m).
To obtain the position of the body, we replace v by dx/dt and integrate

(assuming x(0) = 0) to obtain x(t) = mg
k t − m2g

k2 (1 − e−kt/m). Notice
that as t → ∞ we have vl = mg/k. Namely a 75kg parachutist with air
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resistance 15Nsec/m (when the chute is closed) can get to a maximum
speed of vl = 49.05m/s. This is about 180km/h. Close chute can be
modeled by a different friction coeffiction k = 105Nsec/m. Show Wolfram
demonstration.

• Radiocarbon dating is a process used by anthropologists and archaeologists
to estimate the age of organic matter (such as wood or bone). The vast
majority of carbon on earth is nonradioactive carbon-12 (12C). However,
cosmic rays cause the formation of carbon-14 (14C), a radioactive isotope
of carbon which becomes incorporated into living plants (and therefore into
animals) through the intake of radioactive carbon dioxide (14CO2). When
the plant or animal dies, it ceases its intake of carbon-14, and the amount
present at the time of death begins to decrease (since the14C decays and
is not replenished). Since the half-life of 14C is known to be 5730 years, by
measuring the concentration o f14C in a sample, its age can be determined.
Radioactive matter disintegrates at a rate proportional to the amount
present. If Q(t) is the amount of it at time t, it therefore obays dQ

dt = −rQ
where r > 0 is the constant representing decay rate. Solving, we see that
Q(t) = Q0e

−rt, and it’s half time is therefore given by 1
2 = e−rτ or r = ln 2

τ .

In our case, τ = 5730 so r = ln 2
5730 .

If a fragment of bone is found with 20% of its original 14C, we have
0.2Q0 = Q0e

−rt, so t = 13, 300 years is the age of the bone.
• Determining time of Death: Newton’s law of cooling state that the rate at

which a temperature of an object change is proportional to the difference
between its temperature and the temperature of the surrounding. in other
words, if θ(t) is the temperature of the object, then dθ

dt = −k(θ− T ) where
T is the constant temperature of the surrounding and we assume k > 0
(with a minus sign in the equation) to represent the fact that the object is
warmer than its surrounding.
Assume we found a corpse at t = 0 with temerature 85F, and two hours later
its temperature is 74F (with ambient temperature of 68F). The equation is
separable so dθ

θ−T = −kdt or ln |θ−T | = −kt+C giving θ = T+(θ0−T )e
−kt

where we assume θ0 to be the initial temperature.
It is more convenient to write θ − T = (θ0 − T )e−kt or k = − 1

t ln
θ−T
θ0−T

(t = − 1
k ln θ−T

θ0−T ) In our case, k = − 1
2 ln

74−68
85−68 = 0.52hr−1. So t =

− 1
0.52 ln

98.6−68
85−68 = −1.129hours since 98.6F is the temperature of a liv-

ing human. Therefore the body was discovered 1 hour and 8 minutes after
death.

2.6.2. Biology.

• Exponential Growth: Consider N(t) as the population of a given species at
time t. The simplest model is that the rate of change of N is proportional
to the current value of N .
Let b be the number of births per unit time per elements of the specie,
and d be the number of deaths per unit time per unit specie. Then dN =
(b−d)Ndt, or if r = b−d is a constant, dN

dt = rN . In this case, the constant
r represents the rate of growth (if r > 0) or decay (r < 0). The solution is
N(t) = N0e

rt. Show Wolfram.
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• The previous model was observed to be reasonably accurate for many
populations. However, eventually, limitations on space, food supply or
other resources will reduce the growth rate and bring an end to the ex-
ponential growth. A more general model is of logistic growth, writing
dN/dt = f(N)N where f(N) is a function such that f(N) ∼ r for small
N , but gets smaller as N is sufficiently large. An example of such a model
is dN/dt = (r − aN)N . It is one of the projects that can be studied.

2.6.3. Economics.


