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Polar coordinates

Polar coordinates about (x0, y0) are

x = x0 + r cos θ y = y0 + r sin θ

If f(x, y) is defined about (x0, y0) and satisfies

|f(x, y)| = |f(x0 + r cos θ, y0 + r sin θ)| ≤ g(r)

for every point about (x0, y0) and limr→0 g(r) = 0 then

lim
(x,y)→(x0,y0)

f(x, y) = 0

Intuitively, if the limit is independent of θ then r → 0 means we are approaching the
point (x0, y0) independently of the direction.

Note that limr→0 f(x0+r cos θ, y0+r sin θ) = 0 does not imply that lim(x,y)→(x0,y0) f(x, y) =
0. The limit must be bounded by a function that is independent of θ.

Exercise 1 Find the limit lim(x,y)→(0,0)

√
x2+y2

arccos

(
x√

x2+y2

) if it exists.

Using polar coordinates about (0, 0),√
x2 + y2

arccos

(
x√
x2+y2

) =
r

arccos
(
r cos θ
r

) (1)

=
r

arccos (cos θ)

=
r

θ
for θ ∈ [0, π]
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This means it does not satisfy the conditions of the theorem and there isn’t a bound
independent of θ! If we take the family of spirals θ = kr (for k 6= 0) we see that√

x2 + y2

arccos

(
x√
x2+y2

) = lim
r→0

r

θ
(2)

= lim
r→0

1

k

=
1

k

which depends on k. Therefore the limit does not exist.

Derivatives

Exercise 2 Let

f(x, y) =

{
x sin y2

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

1. Where is f continuous?

2. Compute fx on the entire plane.

3. Is fx continuous at (0, 0)?

1. As a composition of elementary functions, it is clear that f is continuous for
(x, y) 6= (0, 0). At the origin, let’s use polar coordinates

|f(x, y)| = |f(r cos θ, r sin θ)| (3)

= |r cos(θ) sin(r2 sin2 θ)

r2
|

≤ |r cos(θ)r2 sin2 θ

r2
|

= r| cos θ sin2 θ|
≤ r ≡ g(r)

and g(r)→ 0 as r → 0, therefore f is continuous at the origin.

2. For all (x, y) 6= (0, 0) we may use rules of derivatives, and

∂f

∂x
=

sin(y2)(y2 − x2)
(x2 + y2)2
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At the origin, we use the definition of the partial derivative,

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0

h
= 0

Therefore,

∂f

∂x
(x, y) =

{
sin(y2)(y2−x2)

(x2+y2)2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

3. There are two methods to do this. First, using polar coordinates

fx =
sin(r2 sin2 θ)r2(sin2 θ − cos2 θ)

r4
(4)

=
sin(r2 sin2 θ)

r2 sin2 θ
· sin2 θ(sin2 θ − cos2 θ)

= 1 · sin2 θ(− cos 2θ)

The limit depends on θ and therefore does not exist (e.g. for θ = 0 we get 0,
and for θ = π/2 we get −1).

An alternative method is to take paths of the form (t,mt) and then

lim
t→0

fx(t,mt) = lim
t→0

sin(m2t2)t2(m2 − 1)

t4(1 +m2)2
(5)

= lim
t→0

sin(m2t2)

m2t2
·m2t2

(m2 − 1)

t2(1 +m2)2

=
m2(m2 − 1)

(1 +m2)2

which depends on m. Therefore the limit doesn’t exist and fx is discontinuous
at the origin.

Differentiability

Definition 1 We say f(x, y) is differentiable at p0 = (x0, y0) if

f(x, y) = f(x0, y0) + A(x− x0) +B(y − y0) + ε(x, y)
√

(x− x0)2 + (y − y0)2

where A,B are constants and

lim
(x,y)→(x0,y0)

ε(x, y) = 0

Theorem 2 If f is differentiable at (x0, y0) then:
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• f is continuous at (x0, y0).

• A = fx(x0, y0) and B = fy(x0, y0) (and in particular the partial derivatives
exist).

Geometrically, this means we can approximate the graph of f(x, y) with a tangent
plant at p0 = (x0, y0). If we denote z = f(x, y) and z0 = f(x0, y0) and neglect the ε
term then we get

−fx(p0)x− fy(p0)y + z = z0 − fx(p0)x0 − fy(p0)y0

and the right-hand side is indeed a constant. This is the equation of a tangent plane
with normal (−fx(p0),−fy(p0), 1).

How do we check if f is differentiable at p0 = (x0, y0)?

1. Check continuity, not continuous =⇒ not differentiable.

2. Check existence of partial derivatives, don’t exist =⇒ not differentiable.

3. Plug into the formula, solve for ε(x, y) and check if ε → 0. If it does, the
function is differentiable, otherwise it is not.

Definition 3 The gradient of f at p0 is the vector

gradf(p0) = ∇f(p0) = (fx(p0), fy(p0))

The gradient gives the direction of highest slope of the function f .

Exercise 3 Let

f(x, y) =

{
xy3+y4

(x2+y2)k
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Check if f is differentiable at the origin for k = 1, 1.5, 2.

We start by checking continuity using polar coordinates,

f(r cos θ, r sin θ) = |r
4(cos θ sin3 θ + sin4 θ)

r2k
| (6)

≤ 2r4−2k ≡ g(r)

Now limr→0 g(r) = 0 if 4− 2k > 0. Therefore if k = 1, 1.5 then f is continuous at the
origin. For the case k = 2 consider paths of the form (t,mt) and get

lim
t→0

f(t,mt) lim
t→0

m3

(1 +m2)2
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which depends on m. Therefore f is not continuous (and in particular not differen-
tiable for k = 2).

Next, we check the existence of partial derivatives for k = 1, 1.5.

fx(0, 0) = 0

fy(0, 0) = lim
h→0

h4

h2kh
=

{
0 k = 1

1 k = 1.5

Therefore the partial derivatives exist.

But is it differentiable?

Let’s obtain a formula for ε(x, y). We have,

f(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) + ε(x, y)
√

(x− 0)2 + (y − 0)2

For k = 1 we have

ε(x, y) =
xy3 + y4

(x2 + y2)3/2

and in polar coordinates

|ε(r cos θ, r sin θ)| =
r4(sin3 θ cos θ + sin4 θ)

r3
(7)

≤ 2r ≡ g(r)
r→0−−→ 0

Therefore f is differentiable for k = 1.

For k = 1.5 we have

ε(x, y) =
f(x, y)− y√
x2 + y2

(8)

=
xy3 + y4

(x2 + y2)2
− y√

x2 + y2

Consider paths of the form (t,mt) and notice that

lim
t→0

ε(t,mt) = lim
t→0

t4(m3 +m4)

t4(1 +m2)2
− mt√

t2(1 +m2)
(9)

=
m3 +m4

(1 +m2)2
± m√

1 +m2

which depends on m. Therefore ε 6→ 0 and f is not differentiable for k = 1.5.

Theorem 4 If fx, fy exist and are continuous at p0 then f is differentiable at p0.
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Notice that the opposite is not true! For example the function

f(x, y) =

{
(x2 + y2) sin( 1√

x2+y2
) (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

is differentiable at (0, 0) but fx is not continuous at (0, 0). Check it!

f continuous at p0

f has continuous partial derivatives at p0

f is differentiable at p0

f has continuous partial derivatives at p0

Figure 1: The relationship between the existence of partial derivatives of differentia-
bility

The chain rule

Recall that for a function of a single-variable,

d

dx
(f(u(x))) =

df

du

du

dx

and for example,
d

dx
(sin(ln(x))) = cos(ln(x))

1

x

For functions of two variables we have the following theorem.
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Theorem 5 If u, v : R2 → R are differentiable at p0 = (x0, y0) and f : R2 → R is
differentiable at (u0, v0 = u(p0), v(p0)) then f(u(x, y), v(x, y)) is differentiable at p0
and

∂

∂x
(f(u(x, y), v(x, y))) =

∂f

∂u
|(u0,v0)

∂u

∂x
|(x0,y0) +

∂f

∂v
|(u0,v0)

∂v

∂x
|(x0,y0) (10)

and similarly for the derivatives with respect to y.

Exercise 4 (from a test) Let f(x, y) be a differentiable function such that

fx(1, 1) = 5 fy(1, 1) = 0 fx(2, 3) = 3 fy(2, 3) = 4

Define
g(x, y) = f(x2 − y + 2, y3 − x+ 3)

Compute gx(1, 1).

Denote u(x, y) = x2−y+2 and v(x, y) = y3−x+3, and here g(x, y) = f(u(x, y), v(x, y)).
u, v are elementary functions =⇒ differentiable for all x, y. Therefore by the chain
rule,

∂g

∂x
(x, y) =

∂f

∂u
|(u(1,1),v(1,1)

∂u

∂x
|(1,1) +

∂f

∂v
|(u(1,1),v(1,1)

∂v

∂x
|(1,1)

Now notice that (u(1, 1), v(1, 1)) = (2, 3), so we need to differentiate f at this point.

∂f

∂u
|(2,3)= fx(2, 3) = 3

∂f

∂u
|(2,3)= fy(2, 3) = 4

and
∂u

∂x
|(1,1)= 2x |(1,1)= 2

∂v

∂x
|(1,1)= −1 |(1,1)= −1

Therefore we finally obtain gx(1, 1) = 2.

Exercise 5 Consider the surface z = x2 + y2. Compute its tangent plane at (0, 3).

Define z = f(x, y) = x2 + y2. f is clearly differentiable, and ∇f = (2x, 2y). At (0, 3)
the normal vector to the tangent plane is

(−fx(0, 3),−fy(0, 3), 1) = (0, 6,−1)

with the point (0, 3, f(0, 3)) = (0, 3, 9). Therefore we get

6y − z − 9 = 0

as the tangent plane.
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Directional derivative

Definition 6 Let n̂ = (n1, n2) be a unit vector. The directional derivative of f(x, y)
at (x0, y0) in the direction of n̂ is

∂f

∂n
(x0, y0) = lim

h→0

f(x0 + hn1, y0 + hn2)− f(x0, y0)

h

assuming the limit exists (and is finite).

If n̂ = (1, 0) or n̂ = (0, 1) we get the partial derivatives fx, fy respectively.

Theorem 7 If f is differentiable at (x0, y0) and n̂ is a unit vector, then

∂f

∂n
(x0, y0) = ∇f(x0, y0) · n̂

From this theorem

∂f

∂n
(x0, y0) = ∇f(x0, y0) · n̂ = |∇f | cos θ

and it is clear that the value is maximal for θ = 0. Therefore the gradient points in
the direction of maximal ascent!

Exercise 6 Compute the directional derivative of

f(x, y) =

{
x2y
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

at (0, 0 in a general direction.

By definition we get

lim
h→0

h3n2
1n2

h2(n2
1+n

2
2)
− 0

h
= n2

1n2

Can we just use the theorem? In this case∇f(0, 0) = (0, 0) and we get ∂f
∂n

= (0, 0)·n̂ =
0. What’s the reason for the discrepancy? The theorem requires f to be differentiable
at the origin! In this case ε(x, y) = x2y

(x2+y2)3/2
and you can check with paths of the

form (t,mt) that it is not differentiable.

Note that: differentiability =⇒ existence of directional derivatives in all directions!
But existence of directional derivatives in all directions 6 =⇒ differentiability !

Exercise 7 Let f(x, y) = x3y − y3x and ~n = (1, 1). Then ∂f
∂n

(1, 2) is:
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1. does not exist

2. − 13√
2

3. 13

4. -13

A typical solution: Since f is a polynomial, fx, fy exist and are continuous, therefore
f is differentiable.

∂f

∂n
(1, 2) = ∇f(1, 2) · ~n = (−2,−11) · (1, 1) = −13

This is wrong!!! We must first normalize ~n to get n̂ = ( 1√
2
, 1√

2
) and then the answer

is −13/
√

2.

Exercise 8 Let f : R3 → R be a differentiable function such that

• For all x, y we have f(x, y, 2x2 + y2) = 3x− 5y.

• ∂f
∂n

= 1 for n̂ = (1
3
, 2
3
, 2
3
).

Compute ∇f(1, 2, 6).

We need the partials fx, fy, fz at the point (1, 2, 6). Notice it is a point of the form
(x, y, 2x2 + y2) for x = 1, y = 2.

A riddle

X
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