Calculus 2m1
 Session 4: Limits and Derivatives

Yaron Hadad

November 16, 2013

Polar coordinates

Polar coordinates about $\left(x_{0}, y_{0}\right)$ are

$$
x=x_{0}+r \cos \theta \quad y=y_{0}+r \sin \theta
$$

If $f(x, y)$ is defined about $\left(x_{0}, y_{0}\right)$ and satisfies

$$
|f(x, y)|=\left|f\left(x_{0}+r \cos \theta, y_{0}+r \sin \theta\right)\right| \leq g(r)
$$

for every point about $\left(x_{0}, y_{0}\right)$ and $\lim _{r \rightarrow 0} g(r)=0$ then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=0
$$

Intuitively, if the limit is independent of θ then $r \rightarrow 0$ means we are approaching the point $\left(x_{0}, y_{0}\right)$ independently of the direction.
Note that $\lim _{r \rightarrow 0} f\left(x_{0}+r \cos \theta, y_{0}+r \sin \theta\right)=0$ does not imply that $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=$ 0 . The limit must be bounded by a function that is independent of θ.

Exercise 1 Find the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2}+y^{2}}}{\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)}$ if it exists.
Using polar coordinates about $(0,0)$,

$$
\begin{align*}
\frac{\sqrt{x^{2}+y^{2}}}{\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)} & =\frac{r}{\arccos \left(\frac{r \cos \theta}{r}\right)} \tag{1}\\
& =\frac{r}{\arccos (\cos \theta)} \\
& =\frac{r}{\theta} \text { for } \theta \in[0, \pi]
\end{align*}
$$

This means it does not satisfy the conditions of the theorem and there isn't a bound independent of θ ! If we take the family of spirals $\theta=k r$ (for $k \neq 0$) we see that

$$
\begin{align*}
\frac{\sqrt{x^{2}+y^{2}}}{\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)} & =\lim _{r \rightarrow 0} \frac{r}{\theta} \tag{2}\\
& =\lim _{r \rightarrow 0} \frac{1}{k} \\
& =\frac{1}{k}
\end{align*}
$$

which depends on k. Therefore the limit does not exist.

Derivatives

Exercise 2 Let

$$
f(x, y)= \begin{cases}\frac{x \sin y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

1. Where is f continuous?
2. Compute f_{x} on the entire plane.
3. Is f_{x} continuous at $(0,0)$?
4. As a composition of elementary functions, it is clear that f is continuous for $(x, y) \neq(0,0)$. At the origin, let's use polar coordinates

$$
\begin{align*}
|f(x, y)| & =|f(r \cos \theta, r \sin \theta)| \tag{3}\\
& =\left|\frac{r \cos (\theta) \sin \left(r^{2} \sin ^{2} \theta\right)}{r^{2}}\right| \\
& \leq\left|\frac{r \cos (\theta) r^{2} \sin ^{2} \theta}{r^{2}}\right| \\
& =r\left|\cos \theta \sin ^{2} \theta\right| \\
& \leq r \equiv g(r)
\end{align*}
$$

and $g(r) \rightarrow 0$ as $r \rightarrow 0$, therefore f is continuous at the origin.
2. For all $(x, y) \neq(0,0)$ we may use rules of derivatives, and

$$
\frac{\partial f}{\partial x}=\frac{\sin \left(y^{2}\right)\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
$$

At the origin, we use the definition of the partial derivative,

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0}{h}=0
$$

Therefore,

$$
\frac{\partial f}{\partial x}(x, y)= \begin{cases}\frac{\sin \left(y^{2}\right)\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

3. There are two methods to do this. First, using polar coordinates

$$
\begin{align*}
f_{x} & =\frac{\sin \left(r^{2} \sin ^{2} \theta\right) r^{2}\left(\sin ^{2} \theta-\cos ^{2} \theta\right)}{r^{4}} \tag{4}\\
& =\frac{\sin \left(r^{2} \sin ^{2} \theta\right)}{r^{2} \sin ^{2} \theta} \cdot \sin ^{2} \theta\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \\
& =1 \cdot \sin ^{2} \theta(-\cos 2 \theta)
\end{align*}
$$

The limit depends on θ and therefore does not exist (e.g. for $\theta=0$ we get 0 , and for $\theta=\pi / 2$ we get -1).
An alternative method is to take paths of the form $(t, m t)$ and then

$$
\begin{align*}
\lim _{t \rightarrow 0} f_{x}(t, m t) & =\lim _{t \rightarrow 0} \frac{\sin \left(m^{2} t^{2}\right) t^{2}\left(m^{2}-1\right)}{t^{4}\left(1+m^{2}\right)^{2}} \tag{5}\\
& =\lim _{t \rightarrow 0} \frac{\sin \left(m^{2} t^{2}\right)}{m^{2} t^{2}} \cdot m^{2} t^{2} \frac{\left(m^{2}-1\right)}{t^{2}\left(1+m^{2}\right)^{2}} \\
& =\frac{m^{2}\left(m^{2}-1\right)}{\left(1+m^{2}\right)^{2}}
\end{align*}
$$

which depends on m. Therefore the limit doesn't exist and f_{x} is discontinuous at the origin.

Differentiability

Definition 1 We say $f(x, y)$ is differentiable at $p_{0}=\left(x_{0}, y_{0}\right)$ if

$$
f(x, y)=f\left(x_{0}, y_{0}\right)+A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+\varepsilon(x, y) \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}
$$

where A, B are constants and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \varepsilon(x, y)=0
$$

Theorem 2 If f is differentiable at $\left(x_{0}, y_{0}\right)$ then:

- f is continuous at $\left(x_{0}, y_{0}\right)$.
- $A=f_{x}\left(x_{0}, y_{0}\right)$ and $B=f_{y}\left(x_{0}, y_{0}\right)$ (and in particular the partial derivatives exist).

Geometrically, this means we can approximate the graph of $f(x, y)$ with a tangent plant at $p_{0}=\left(x_{0}, y_{0}\right)$. If we denote $z=f(x, y)$ and $z_{0}=f\left(x_{0}, y_{0}\right)$ and neglect the ε term then we get

$$
-f_{x}\left(p_{0}\right) x-f_{y}\left(p_{0}\right) y+z=z_{0}-f_{x}\left(p_{0}\right) x_{0}-f_{y}\left(p_{0}\right) y_{0}
$$

and the right-hand side is indeed a constant. This is the equation of a tangent plane with normal $\left(-f_{x}\left(p_{0}\right),-f_{y}\left(p_{0}\right), 1\right)$.
How do we check if f is differentiable at $p_{0}=\left(x_{0}, y_{0}\right)$?

1. Check continuity, not continuous \Longrightarrow not differentiable.
2. Check existence of partial derivatives, don't exist \Longrightarrow not differentiable.
3. Plug into the formula, solve for $\varepsilon(x, y)$ and check if $\varepsilon \rightarrow 0$. If it does, the function is differentiable, otherwise it is not.

Definition 3 The gradient of f at p_{0} is the vector

$$
\operatorname{gradf}\left(p_{0}\right)=\nabla f\left(p_{0}\right)=\left(f_{x}\left(p_{0}\right), f_{y}\left(p_{0}\right)\right)
$$

The gradient gives the direction of highest slope of the function f.
Exercise 3 Let

$$
f(x, y)= \begin{cases}\frac{x y^{3}+y^{4}}{\left(x^{2}+y^{2}\right)^{k}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Check if f is differentiable at the origin for $k=1,1.5,2$.
We start by checking continuity using polar coordinates,

$$
\begin{align*}
& f(r \cos \theta, r \sin \theta)=\left|\frac{r^{4}\left(\cos \theta \sin ^{3} \theta+\sin ^{4} \theta\right)}{r^{2} k}\right| \tag{6}\\
& \leq 2 r^{4-2 k} \equiv g(r)
\end{align*}
$$

Now $\lim _{r \rightarrow 0} g(r)=0$ if $4-2 k>0$. Therefore if $k=1,1.5$ then f is continuous at the origin. For the case $k=2$ consider paths of the form $(t, m t)$ and get

$$
\lim _{t \rightarrow 0} f(t, m t) \lim _{t \rightarrow 0} \frac{m^{3}}{\left(1+m^{2}\right)^{2}}
$$

which depends on m. Therefore f is not continuous (and in particular not differentiable for $k=2$).
Next, we check the existence of partial derivatives for $k=1,1.5$.

$$
\begin{aligned}
f_{x}(0,0) & =0 \\
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{h^{4}}{h^{2 k} h} & = \begin{cases}0 & k=1 \\
1 & k=1.5\end{cases}
\end{aligned}
$$

Therefore the partial derivatives exist.
But is it differentiable?
Let's obtain a formula for $\varepsilon(x, y)$. We have,

$$
f(x, y)=f(0,0)+f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)+\varepsilon(x, y) \sqrt{(x-0)^{2}+(y-0)^{2}}
$$

For $k=1$ we have

$$
\varepsilon(x, y)=\frac{x y^{3}+y^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

and in polar coordinates

$$
\begin{align*}
|\varepsilon(r \cos \theta, r \sin \theta)| & =\frac{r^{4}\left(\sin ^{3} \theta \cos \theta+\sin ^{4} \theta\right)}{r^{3}} \tag{7}\\
& \leq 2 r \equiv g(r) \xrightarrow{r \rightarrow 0} 0
\end{align*}
$$

Therefore f is differentiable for $k=1$.
For $k=1.5$ we have

$$
\begin{align*}
\varepsilon(x, y) & =\frac{f(x, y)-y}{\sqrt{x^{2}+y^{2}}} \tag{8}\\
& =\frac{x y^{3}+y^{4}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{y}{\sqrt{x^{2}+y^{2}}}
\end{align*}
$$

Consider paths of the form $(t, m t)$ and notice that

$$
\begin{align*}
\lim _{t \rightarrow 0} \varepsilon(t, m t) & =\lim _{t \rightarrow 0} \frac{t^{4}\left(m^{3}+m^{4}\right)}{t^{4}\left(1+m^{2}\right)^{2}}-\frac{m t}{\sqrt{t^{2}\left(1+m^{2}\right)}} \tag{9}\\
& =\frac{m^{3}+m^{4}}{\left(1+m^{2}\right)^{2}} \pm \frac{m}{\sqrt{1+m^{2}}}
\end{align*}
$$

which depends on m. Therefore $\varepsilon \nrightarrow 0$ and f is not differentiable for $k=1.5$.

Theorem 4 If f_{x}, f_{y} exist and are continuous at p_{0} then f is differentiable at p_{0}.

Notice that the opposite is not true! For example the function

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is differentiable at $(0,0)$ but f_{x} is not continuous at $(0,0)$. Check it!

Figure 1: The relationship between the existence of partial derivatives of differentiability

The chain rule

Recall that for a function of a single-variable,

$$
\frac{d}{d x}(f(u(x)))=\frac{d f}{d u} \frac{d u}{d x}
$$

and for example,

$$
\frac{d}{d x}(\sin (\ln (x)))=\cos (\ln (x)) \frac{1}{x}
$$

For functions of two variables we have the following theorem.

Theorem 5 If $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable at $p_{0}=\left(x_{0}, y_{0}\right)$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $\left(u_{0}, v_{0}=u\left(p_{0}\right), v\left(p_{0}\right)\right)$ then $f(u(x, y), v(x, y))$ is differentiable at p_{0} and

$$
\begin{equation*}
\frac{\partial}{\partial x}(f(u(x, y), v(x, y)))=\left.\left.\frac{\partial f}{\partial u}\right|_{\left(u_{0}, v_{0}\right)} \frac{\partial u}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}+\left.\left.\frac{\partial f}{\partial v}\right|_{\left(u_{0}, v_{0}\right)} \frac{\partial v}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \tag{10}
\end{equation*}
$$

and similarly for the derivatives with respect to y.
Exercise 4 (from a test) Let $f(x, y)$ be a differentiable function such that

$$
f_{x}(1,1)=5 \quad f_{y}(1,1)=0 \quad f_{x}(2,3)=3 \quad f_{y}(2,3)=4
$$

Define

$$
g(x, y)=f\left(x^{2}-y+2, y^{3}-x+3\right)
$$

Compute $g_{x}(1,1)$.
Denote $u(x, y)=x^{2}-y+2$ and $v(x, y)=y^{3}-x+3$, and here $g(x, y)=f(u(x, y), v(x, y))$. u, v are elementary functions \Longrightarrow differentiable for all x, y. Therefore by the chain rule,

$$
\frac{\partial g}{\partial x}(x, y)=\left.\left.\frac{\partial f}{\partial u}\right|_{(u(1,1), v(1,1)} \frac{\partial u}{\partial x}\right|_{(1,1)}+\left.\left.\frac{\partial f}{\partial v}\right|_{(u(1,1), v(1,1)} \frac{\partial v}{\partial x}\right|_{(1,1)}
$$

Now notice that $(u(1,1), v(1,1))=(2,3)$, so we need to differentiate f at this point.

$$
\begin{aligned}
& \left.\frac{\partial f}{\partial u}\right|_{(2,3)}=f_{x}(2,3)=3 \\
& \left.\frac{\partial f}{\partial u}\right|_{(2,3)}=f_{y}(2,3)=4
\end{aligned}
$$

and

$$
\begin{gathered}
\left.\frac{\partial u}{\partial x}\right|_{(1,1)}=\left.2 x\right|_{(1,1)}=2 \\
\left.\frac{\partial v}{\partial x}\right|_{(1,1)}=-\left.1\right|_{(1,1)}=-1
\end{gathered}
$$

Therefore we finally obtain $g_{x}(1,1)=2$.
Exercise 5 Consider the surface $z=x^{2}+y^{2}$. Compute its tangent plane at $(0,3)$.
Define $z=f(x, y)=x^{2}+y^{2} . f$ is clearly differentiable, and $\nabla f=(2 x, 2 y)$. At $(0,3)$ the normal vector to the tangent plane is

$$
\left(-f_{x}(0,3),-f_{y}(0,3), 1\right)=(0,6,-1)
$$

with the point $(0,3, f(0,3))=(0,3,9)$. Therefore we get

$$
6 y-z-9=0
$$

as the tangent plane.

Directional derivative

Definition 6 Let $\hat{n}=\left(n_{1}, n_{2}\right)$ be a unit vector. The directional derivative of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of \hat{n} is

$$
\frac{\partial f}{\partial n}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h n_{1}, y_{0}+h n_{2}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

assuming the limit exists (and is finite).

If $\hat{n}=(1,0)$ or $\hat{n}=(0,1)$ we get the partial derivatives f_{x}, f_{y} respectively.
Theorem 7 If f is differentiable at $\left(x_{0}, y_{0}\right)$ and \hat{n} is a unit vector, then

$$
\frac{\partial f}{\partial n}\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \hat{n}
$$

From this theorem

$$
\frac{\partial f}{\partial n}\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \hat{n}=|\nabla f| \cos \theta
$$

and it is clear that the value is maximal for $\theta=0$. Therefore the gradient points in the direction of maximal ascent!

Exercise 6 Compute the directional derivative of

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

at (0,0 in a general direction.

By definition we get

$$
\lim _{h \rightarrow 0} \frac{\frac{h^{3} n_{1}^{2} n_{2}}{h^{2}\left(n_{1}^{2}+n_{2}^{2}\right)}-0}{h}=n_{1}^{2} n_{2}
$$

Can we just use the theorem? In this case $\nabla f(0,0)=(0,0)$ and we get $\frac{\partial f}{\partial n}=(0,0) \cdot \hat{n}=$ 0 . What's the reason for the discrepancy? The theorem requires f to be differentiable at the origin! In this case $\varepsilon(x, y)=\frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}}$ and you can check with paths of the form $(t, m t)$ that it is not differentiable.
Note that: differentiability \Longrightarrow existence of directional derivatives in all directions! But existence of directional derivatives in all directions \Longleftrightarrow differentiability !

Exercise 7 Let $f(x, y)=x^{3} y-y^{3} x$ and $\vec{n}=(1,1)$. Then $\frac{\partial f}{\partial n}(1,2)$ is:

1. does not exist
2. $-\frac{13}{\sqrt{2}}$
3. 13
4. -13

A typical solution: Since f is a polynomial, f_{x}, f_{y} exist and are continuous, therefore f is differentiable.

$$
\frac{\partial f}{\partial n}(1,2)=\nabla f(1,2) \cdot \vec{n}=(-2,-11) \cdot(1,1)=-13
$$

This is wrong!!! We must first normalize \vec{n} to get $\hat{n}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and then the answer is $-13 / \sqrt{2}$.

Exercise 8 Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable function such that

- For all x, y we have $f\left(x, y, 2 x^{2}+y^{2}\right)=3 x-5 y$.
- $\frac{\partial f}{\partial n}=1$ for $\hat{n}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.

Compute $\nabla f(1,2,6)$.

We need the partials f_{x}, f_{y}, f_{z} at the point $(1,2,6)$. Notice it is a point of the form $\left(x, y, 2 x^{2}+y^{2}\right)$ for $x=1, y=2$.

A riddle

X

