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The Problem of Radiation-Reaction

The Lorentz force equation: mi® = —eF*Pug

The rate at which energy is radiated away from the electron

2 2
is: R = —mmyu*t, where 1 = ge_ = 6.24 x 10~ %% s
m

Therefore an accelerating charge loses energy:.
This effect is not included in the Lorentz force equation!
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Electron emits much less than 1% of its rest energy



Current Radiation-Reaction Models

Dirac: Maxwell equations and energy conservation give:

mu” = —eFO‘BuB + mo + a2uo‘}

F Lorentz F RR
this is called the LAD Equation (Lorentz-Abraham-Dirac).

The 3rd order time derivative requires another initial
condition (initial acceleration) and results in infinitely
many non-physical solutions...

Dirac replaced the additional condition with an
“asymptotic condition”. Instead of giving the initial
acceleration, give the final acceleration.




Current Radiation-Reaction Models

Landau-Lifshitz: Usually frr < FrLorent:

. a 5,

T

So in the first order;:  m4* = —eF*Pug + %——H(XA— hen

We can “get rid” of the third derivative in the radiation-

reaction force, and get the Landau-Lifshitz equation:
mu® = —eF*Pug — ety {Fﬁﬁumﬂ —e/m [F*PFg " — FPVE su’ugu®] }

There are at least five other possible models (e.g. Caldirola,

Mo-Papas, Eliezer), but only Landau-Lifs

nitz Eq. 18

considered to be theoretically reasonable

‘'Wald et al. 2009]




Lines of Attack for Solving the Problem

: . ¢
Obtain a fully consistent theory of
radiation-reaction. ;
PRR———

Test radiation-reaction in ‘
the lab.

What do current models / Up to the present time, the
predict about radiation- radiation-reaction force
reaction? remains experimentally

untested
Find and study solutions —




The Radiation-Reaction Dominated Regime (RRDR)

The rate at which energy is radiated RRDR Criterion

for the Landau-Lifshitz equation: |
N ag ~ 10° |
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+ (wro) 34" - &' — afwd®| + O(r) }

Landau-Lifshitz correction ~ wmyag

Radiation-reaction is important

when wmyag ~ 1

or for a single electron: ag ~ 10*
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The Setup

We use a linearly polarized (LP) plane wave with fields:
= —Agsin(kz — wt)Z

= —wApcos(kz —wt)z
= —kAgcos(kz — wt)y

ap =2.7 T =26.8fs ! ey ®®®
A =942 nm w—2fs_1 ® ®

Wave Direction: 2 Polanzatlon
etme——

The usual solution of the Lorentz force equation in lab time:
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Solution of the Landau-Lifshitz Equation

Since the Landau-Lifshitz equation is nonlinear, solving in

terms of the proper time is much more complicated...

Remember that the wave is a functionof E = k-2 = wt — k - T

he “trick”: change variables 7 — &

his works much more generally than a LP plane wave)
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Back to Laboratory Time

There is a non-trivial relationship .
between lab time and the phase. Momentum

gain in
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The Motion of the Electrons Cluster

=2.7, A=942
For the Lorentz force omsn e

equation, the motion in the

electron’s drift frame is an

‘eight’ figure.
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In the same frame, the
electrons cluster breakout

faster than a single electron:

There is a small drift in I
the initial direction of The radiation-reaction is a non-conserving force, so the

polarization motion in the (inertial) drift frame is not a close contour.
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Angular Distribution of Radiation
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Radiation Spectrum
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Back to Acceleration
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Can acceleration indeed be | The Landau-Lifshitz
equation predicts no

limit on acceleration.

R

arbitrarily large?
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Supplemental Formulas

ag

The relation between variables: s o —

where:
T particle’s proper time

kY wave four-vector
8% A L% i A
Ug initial four-velocity

/O g {fl’(y)r dy

1 1

for linearly polarized plane wave: ¥(§) = — 5 (€ 4+ = sin 2¢)

2
1
this gives: HE = . gu | SCL%TO [1 -+ 2{2 — COS 25]
* U




