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1. MOTIVATION
Given a linear equation

% Oyt ut Oy (E) 2Lt O (1) Lt
u(x,0) given

(1.1)

we can solve the problem using the Fourier transform. This is the (linear!) integral
transformation

1 o ,
u(z,t) — Flu] (kt) = — u(x,t) e *dy
@t) = Fl () = 2= [ u
which turns equation 1.1 into an (infinite) set of ODEs
ga =Co(t)u+Cy(t) (—ik) i+ -+ Cp (t) (—ik)" @
@ (k,0) given

which can be solved, and then transformed back to u (z,t) using the inverse Fourier
transform F~'. In other words, we solve linear PDEs using the following scheme

1 II III
u(k,0) —————  u (k,t) — t
u(if,O) ?’LL( ’0) solution of ODE 'LL( ’ ) F-1 U(fE, )

However, once the PDE is not linear, the Fourier transform is in general useless since
we don’t know how to compute the Fourier transform of a nonlinear combination
of unknown functions. As an example, the universal (i.e. appears all over the place
in application!) PDE called the Korteweg-de Vreis equation (KdV equation)

(1.2) Uy — 6UUL + Uggy = 0

cannot be solved using the Fourier transform.

The Inverse Scattering Transform (IST) is a nonlinear analog of the Fourier
transform which allows to transform a nonlinear PDE into an (infinite) set of ODEs,
thus allowing to solve many nonlinear PDEs! Since the PDEs we will start from
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are nonlinear, we cannot expect the IST to be a linear transformation (and it is
not linear...). The amazing thing about it is that the transformation is based on
a purely physical argument (in Scattering Theory) that apriori has nothing to do
with the initial PDE we started from.

2. IST ror THE KDV

2.1. Introduction. In (quantum) scattering theory, we study the collison of a
wave-particle represented by a wave function ¢ (x,t) and a potential u (z,¢). (PLACE
PICTURE). The common problems are separated into two branches:

e The Direct Scattering Problem: We know the potential w (x,t) and want
to understand the evolution of the wave function 1 (z,t).

e The Inverse Scattering Problem: This covers the more realistic problem in
which we shoot a beam from one side, watch it coming out from the other
side (i.e. we know % (z,t)) and then we want to understand the potential
u (z,t) that caused the change in the wave-function. The fact that we know
to solve the inverse scattering problem is the reason most medical imaging
system work (like MRI)!

We will soon see that if we let u (z,t) in the KAV Eq. 1.2 be the potential, we can
find how the potential evolves (namely the solution of the KdV!) by considering the
direct and inverse scattering problems. This will give us the solution of the KdV
without actually solving the KdV equation using the following scheme

u(z,0) --» wu(z,t)
1] 1111
s(0) L s
where

e [: Solving the direct scattering problem, namely calculating the initial scat-
tering data s (0) from the initial condition u (z, 0) by solving the Schrédinger
equation with potential u (x,0).

e II : Evolving the scattering data. We will solve this step in the general case.

e IIT : Solving the inverse scattering problem, namely constructing the po-
tential u (z,t) based on the scattering data s ().

2.2. Scattering Theory. Consider the one-dimensional Schrédinger operator L =
2
—(f? +u (z), and assume u (x) is sufficiently smooth and vanishes as |z| — co. We
study the eigenvalue problem
d?e
Ly = —E‘FU(I)?/): AP

for v that are bounded on the real axis.

2.3. Integration of the KdV Equation. We consider the Schrédinger equation

d2
(2.1) L¢=—%%+u@ﬁ¢:Aw

where the potential u also depends on time ¢t. The dependence of v on ¢ means that
the wave function ¢ and the eigenvalue A will also depend on t. Peter Lax noticed
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that if we define the operator A as

d? d d

A=4—-3u—+ —

dax3 (u dx + dx u)
then the equation
(2.2) L=[L,A]
is equivalent to KAV Eq. 1.2 (think about it: L is simplify the operator of multi-
plication by u;, while by simplifying the right-hand side, you’ll see it is just multi-
plication by 6uu,; — Uz, ). The operators L and A are called the Lax pair for the
KdV equation, as they can be used to give a different representation for the KdV.

Theorem 1. L = [L, A] for A skew-symmetric (in L? (R)) if and only if L (t) is
unitarily equivalent to L (0).

Proof. (<) L(t) = U (t) L (0)U~!(¢) for a unitary operator U (t). Differentiating
with respect to time t, we have

i UL(0)U~! — UL (0) (U*lUU*I)
= U(UU)L(OU - ULO)U ) UU!
= (ou) (LU - (LU (0U)
- (o) r-r(vu)

= [L-ou]
so L =[L,A] for A= —UU~'. A is skew-symmetric since

ar = — (o)
- oy
= -UU-!
= —u(-utou)
= Ut
= -A

(=) By the previous computation already expect to have A = —UU~'. But

since A is independent of ¢ it is clear that defining
U (t) = exp (—At)
satisfies A = UU~! (U is also unitary since U*U = exp (—A*t)exp (—At) =
exp (At) exp (—At) = 0). But then,
% (UT'LU) = -U'OUT'LU+U'LU+U'LU
= UTMALU+U Y (LA- AL)U +U'LU
= U 'ALU+U'LAU —U 'ALU —U'LAU
0
and clearly U™'LU |,—o= L (0). Therefore U7'LU = L(0), or L (t) is unitarly
equivalent to L (0). O
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Since L (t) and L (0) are unitarily equivalent, they have the same spectrum,
because if f is an eigenfunction of L (0) with eigenvalue k2, then

L(Uf)=UL(0)f=UX =A(U/)

and we see that U f is an eigenfunction of L (t) with the same eigenvalue. Therefore,
the eigenvalues of L (t) are independent of time!
We take the derivative of the Schréodinger Eq. 2.1 with respect to time, obtaining

Lf+Lf=Fkf

and using the Lax Eq. 2.2

LAf — ALf+ Lf —k*f =0
or since Lf = k%f

(L-#) (f-Aar) =0

ie. f+ Af is an eigenfunction of L with the same eigenvalue as for f. We saw
previously that

f=e* 4 0(1) as z — —o0
and this asymptotic behavior is independent of time. Therefore by the definition
of A

f+Af =4ik3e ™ 4 0(1) as x — —oc0
but by the definition of f = e~"% as x — —oo we see that
f+Af=4ik’f +0(1) as 2 — —o0
Remember that as © — oo we defined
o =a(k,t)e ™ £ b(k,t)e*® +0(1) as z — oo

therefore as  — oo (recalling that w vanishes) we have

, . d? i '
qe ke + hetkr — (_4dx3 + 47/]@3) (Cbe_“mc + b@mx> as r — o0
or
(2.3) @ =0
b = 8ik%

this is called the Gardner-Greene, Kruskal and Miura (GGKM) equation. It means
that the time evolution of the scattering data for the continuous spectrum is given
by a trivial set of ordinary differential equation! In the discrete case, since ik, are
the zeros of the time-invariant @ = 0, we have X,, = 0. The time-dependence of
by, (t) is the coefficient in the asymptotic expansion

@ (z,iX,) = b, (t) e % 4+ 0 (eiX"z) as r — 0o
which gives (similarly to what we did before)
by, = 8X3b,
Finally, we may write the time evoluation of the scattering data as

s(t) = {7“ (k,0) 3t X bpe®®nt p =1, N}
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