Complex functions and integral transformations Session 3: Cauchy-Riemann Equations

Yaron Hadad

October 25, 2013

Theorem 1 f = u + iv is differentiable at $z_0 = x_0 + iy_0 \iff u, v$ are differentiable at $(x_0, y_0 \text{ and satisfy the Cauchy-Riemann equations})$

$$u_x = v_y \qquad u_y = -v_x \tag{1}$$

Exercise 1 Let f be differentiable in a domain D such that |f(z)| = const for all $z \in D$. Prove that f is constant in D.

Geometrically, this means that if a differentiable function maps a domain to a circle, then it actually maps it to a single point (circle of radius 0).

If $|f(z)| \equiv 0$ then $f(z) \equiv 0$ for all $z \in D$. Otherwise $|f(z)| = c \neq 0$ and $c \in \mathbb{R}$. This means $|f(z)|^2 = u^2 + v^2 = c^2$. Differentiating w.r.t x and y gives

$$\begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(2)

Our assumption that $u^2 + v^2 \neq 0$ means $\begin{bmatrix} u \\ v \end{bmatrix} \neq \vec{0}$. This means we just found a non-trivial solution to the linear equation! Therefore the determinant of the matrix must be zero, namely

$$\det \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} = 0 \tag{3}$$

or, $u_x v_y - u_y v_x = 0$. Since f is differentiable u, v satisfy the Cauchy-Riemann equations, therefore $(u_x)^2 + (u_y)^2 = (v_x)^2 + (v_y)^2 = 0$. So u = const and v = const, meaning that f is constant in D.

Exercise 2 Prove that if f is analytic in \mathbb{C} (\equiv entire) and $(Re(f))^2 = Im(f)$ for all $z \in \mathbb{Z}$ then f = const in \mathbb{C} .

The assumption gives $u^2 = v$. f is analytic $\implies u, v$ satisfy the Cauchy-Riemann equations, yielding

$$u_x = v_y = 2uu_y = 2u(-2uu_x) = -4u^2u_x$$
(4)

therefore $u_x(1 + 4u^2) = 0$, and $u_x = 0$. Similarly $u_y = 0$ and we may conclude u is constant. Because $v = u^2$ it must be constant as well. Hence, f = constant.

Exercise 3 Let f(z) = u(x, y) + iv(x, y) is analytic at z = 0 then $g(z) = \overline{f(\overline{z})}$ at z = 0.

Note that

$$g(x+iy) = \overline{f(x-iy)} = u(x,-y) - iv(x,-y) \equiv \tilde{u} + i\tilde{v}$$
(5)

u, v are differentiable about $(0, 0) \implies \tilde{u}, \tilde{v}$ are differentiable about (0, 0). We need to check they satisfy the Cauchy-Riemann equations as well:

$$\begin{aligned}
\tilde{u}_x &= u_x & (6) \\
\tilde{u}_y &= -u_y \\
\tilde{v}_x &= -v_x \\
\tilde{v}_y &= v_y
\end{aligned}$$

f is analytic about z = 0 implies that there exists a radius r > 0 such that u, v satisfy the Cauchy-Riemann equations in $D = \{z : |z| \le r\}$. If $z \in D$ then $\overline{z} \in D$ and the Cauchy-Riemann equations are satisfied for \tilde{u}, \tilde{v} . Therefore g is analytic at z = 0.

Definition 2 The z/\bar{z} (Wirtinger) derivatives are defined to be:

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$
(7)

The operator $\frac{\partial}{\partial z}$ is not sufficient to differentiation by z (the z/\bar{z} operators are always defined if $u, v \in C^1$, but recall that sometimes $u, v \in C^1$ but f'(z) still doesn't exist).

Exercise 4 Prove that if f is differentiable at z_0 then $f'(z_0) = \frac{\partial f}{\partial z}(z_0)$.

Easy,

$$\frac{\partial f}{\partial z} = \frac{1}{2}(f_x - if_y) = \frac{1}{2}\left[u_x + iv_x - i(u_y + iv_y)\right] = u_x + iv_x \tag{8}$$

where the last equality follows from the Cauchy-Riemann equations. But this is simply $f'(z_0)$.

Exercise 5 Prove that f satisfies the Cauchy-Riemann equations if and only if $\frac{\partial f}{\partial \bar{z}} = 0$.

Compute,

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left[u_x + i u_y + i (v_x + i v_y) \right] = \frac{1}{2} \left[(u_x - v_y) + i (u_y + v_x) \right] \tag{9}$$

showing that it vanishes if and only if the Cauchy-Riemann equations hold.

Exercise 6 Prove that in polar coordinates the Cauchy-Riemann equations are

$$u_r = \frac{1}{r} v_\theta \qquad v_r = -\frac{1}{r} u_\theta \tag{10}$$

In polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$. Notice that

$$\partial_r = x_r \partial_x + y_r \partial_y = \cos\theta \partial_x + \sin\theta \partial_y$$

$$\partial_\theta = x_\theta \partial_x + y_\theta \partial_y = -r \sin\theta \partial_x + r \cos\theta \partial_y$$
(11)

From the Cartesian Cauchy-Riemann equations

$$u_{r} = \cos \theta u_{x} + \sin \theta u_{y} = \cos \theta v_{y} - \sin \theta v_{x}$$
(12)

$$v_{r} = \cos \theta v_{x} + \sin \theta v_{y} = -\cos \theta u_{y} + \sin \theta u_{x}$$

$$u_{\theta} = -r \sin \theta u_{x} + r \cos \theta u_{y}$$

$$v_{\theta} = -r \sin \theta v_{x} + r \cos \theta v_{y}$$

giving $u_r = \frac{1}{r}v_\theta$ and $v_r = -\frac{1}{r}u_\theta$ as we wanted.

Remark 3 One can prove that if f(z) is differentiable then in polar coordinates

$$f'(z) = u_x + iv_x = (\cos\theta - i\sin\theta)(u_r + iv_r)$$
(13)

A riddle

Using 6 sticks with identical sizes, create 4 equilateral triangles without having modifying the sticks (or having any extra parts popping out).