Complex functions and integral transformations Session 1: Introduction

Yaron Hadad

November 1, 2013

Complex numbers

- The complex field $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\}$ where $i^{2}=-1$.

Figure 1: A number in the complex plane

- The Cartesian representation of a complex number $z=x+i y$.
- For two complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$:
- Addition / difference: $z_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right)$.

Figure 2: Addition of complex numbers

- Product:

$$
\begin{equation*}
z_{1} \cdot z_{2}=\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(y_{1} x_{2}+y_{2} x_{1}\right) \tag{1}
\end{equation*}
$$

- The complex conjugate of z is $\bar{z}=\overline{x+i y}=x-i y$, it satisfies:

$$
\begin{aligned}
& -\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}} \\
& -\overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}
\end{aligned}
$$

- The quotient of two numbers z_{1}, z_{2} is:

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{z_{1} \overline{z_{2}}}{z_{2} \overline{z_{2}}}=\frac{\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}-i y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}} \tag{2}
\end{equation*}
$$

- The real part: $\operatorname{Re}(z)=x=\frac{z+\bar{z}}{2}$.
- The imaginary part: $\operatorname{Im}(z)=y=\frac{z-\bar{z}}{2 i}$.
- The modulus $|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}}$, satisfying
$-\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
 geometric interpretation)

Figure 3: The complex conjugate

- The argument: $\tan \theta=\frac{y}{x}$ (note that this does not mean $\theta=\arctan \frac{y}{x}!$)

Notation: $\theta=\arg (z)$. The argument is a multi-valued function, satisfying
$-\arg \left(z_{1} \cdot z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$-\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
Note that both of this formulas are set equalities.

- The principal argument: $\operatorname{Arg}(z) \in \arg (z)$ such that $\operatorname{Arg}(z) \in(-\pi, \pi)$. This is a single-valued function. Some people defined it to be $\operatorname{Arg}(z) \in(\alpha, \alpha+2 \pi)$.
- Euler's formula: $e^{i \theta}=\cos \theta+i \sin \theta$.

It leads to one of the most beautiful equations in mathematics: $e^{i \pi}+1=0$, connecting the five most important numbers.

- Polar representation of a complex number: $z=r e^{i \theta}$ with $r=|z|$ and $\theta \in \arg (z)$. See figure 1 for its geometric interpretation.
- De moivre's formula: for all $n \in \mathbb{Z}(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ (follows from $\left.\left(e^{i \theta}\right)=e^{i n \theta}\right)$. Therefore for any complex numbers

$$
\begin{equation*}
z^{n}=\left(r e^{i \theta}\right)^{n}=r^{n}(\cos n \theta+i \sin n \theta) \tag{3}
\end{equation*}
$$

- The n-th root: $\sqrt[n]{z}=\sqrt[n]{r e^{i} \theta}=\sqrt[n]{r}\left(\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right)$ for $k=0,1, \ldots, n-$ 1.

Problems

1. Write down the quotient $\frac{(1+i)^{9}}{(1-i)^{7}}$ in the Cartesian form $z=x+i y$.
2. Find the set of points z in the complex plane satisfying the inequality

$$
\begin{equation*}
|z-i|-|z+i|<2 \tag{4}
\end{equation*}
$$

3. Compute $\arg (z)$ and $\operatorname{Arg}(z)$ for:
(a) $z=-6-6 i$
(b) $z=-\pi$
(c) $z=10 i$
(d) $z=\sqrt{3}-i$
4. Prove that
(a) $e^{z+i \pi}=-e^{z}$
(b) $\overline{e^{z}}=e^{\bar{z}}$
5. Prove the parallelogram equality:

$$
\begin{equation*}
|z+w|^{2}+|z-w|^{2}=2\left(|z|^{2}+|w|^{2}\right) \tag{5}
\end{equation*}
$$

for all $z, w \in \mathbb{C}$
6. Find all the solutions of $(z-1)^{3}=-3$.

Solution:

$$
\begin{equation*}
z=1+\sqrt[3]{-3}=1+\sqrt[3]{3} \sqrt[3]{e^{i \pi}}=1+\sqrt[3]{3} e^{i \frac{\pi+2 \pi k}{3}} \tag{6}
\end{equation*}
$$

where $k=0,1,2$.
7. Prove that $\sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta$.

Solution: Use Euler's formula for $e^{i 3 \theta}=\left(e^{i \theta}\right)^{3}$ and take the imaginary part.
8. Plot the domains:
(a) $A=\left\{z \in \mathbb{C} \mid z \neq 0,0 \leq \operatorname{Re}\left(\frac{1}{z}\right)\right\}$

Solution: $\operatorname{Re}\left(\frac{1}{z}\right)=\operatorname{Re}\left(\frac{\bar{z}}{|z|^{2}}\right)=\frac{x}{x^{2}+y^{2}}$ so it is clear that $\operatorname{Re}\left(\frac{1}{z}\right) \geq 0$ iff $x>0$. So $A=\{z \in \mathbb{C} \mid \operatorname{Re}(z) \geq 0, z \neq 0\}$.
(b) $B=\left\{z \in \mathbb{C} \mid z \neq 0,1 \leq \operatorname{Re}\left(\frac{1}{z}\right)\right\}$

Solution: Similarly to before, an algebraic analysis shows B is the closed circle of radius $1 / 2$ around $z=\frac{1}{2}$ excluding the point $z=0$.
(c) $C=\left\{z \in \mathbb{C} \left\lvert\, \frac{\pi}{4} \leq \operatorname{Arg}(z+i) \leq \frac{\pi}{2}\right.\right\}$

A riddle

Take the L-shaped region 1 in figure 4 and split it into two identical parts. Now split region 2 into three identical parts. Last but not least, split region 3 into four identical parts.

Figure 4: The complex conjugate

