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Classical Mechanics



Newtonian Mechanics

Newton’s 2nd Law: The trajectory x(t) of a particle with mass m
is determined by

mẍ = F (x, ẋ)

where F is the force exerted on the particle.

Usually, the force is conservative and independent of ẋ, and
thus can be written as (minus) the gradient of a function:

mẍ = −∂V
∂x

where V (x) is called the potential function.
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mẍ = −∂V
∂x

where V (x) is called the potential function.



Lagrangian Mechanics
In Calculus of Variations, we study the ‘action’ functional

S[x] =
∫ t2

t1
L(x(t), ẋ(t), t)dt

where L is called the Lagrangian.

This is a functional over the
space of all possible continuous paths.
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Lagrangian Mechanics

The path extremizing S[x] satisfies Euler-Lagrange’s equation:

∂L
∂x

=
d
dt

(
∂L
∂ẋ

)

Taking L = 1
2mẋ2 − V (x) gives back Newton’s 2nd Law.

Instead, Lagrange preferred to think of Nature as optimal: we
can think of the particle as traveling in such a way that it always
minimizes (extremizes) the action S.
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Hamiltonian Mechanics
The momentum of the particle is p = mẋ.

The Legendre’s transform of the Lagrangian is the Hamiltonian

H =
p2

2m
+ V (x)

Consider the first order PDEs:

ẋ =
∂H
∂p

ṗ = −∂H
∂x

These are the celebrated Hamilton’s equations. Consequence:

dH
dt

= 0 (conservation of energy)
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ṗ = −∂H
∂x

These are the celebrated Hamilton’s equations. Consequence:

dH
dt

= 0 (conservation of energy)



Riemann’s 1859 Paper



Euler Product Formula

Theorem (Dirichlet, 1838)
For s > 1

∞∑
n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

This follows from the fundamental theorem of arithmetic.

Note: The divergence at s = 1 implies the infinitude of primes.
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The Zeta Function

Riemann considered

ζ(s) :=
∞∑

n=1

1
ns

for complex s.

This gives an analytic function in the half-plane <(s) > 1, and
Riemann found a (unique) meromorphic continuation to all of C.

Riemann used complex analysis to find a formula for the
number of primes π(x) less than a given magnitude x .
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The Functional Equation and Special Values

Riemann also established the identity

ζ(s)
(−s)!

= (2π)s−12 sin(sπ/2)ζ(1− s)

We have ζ(0) = −1/2 and for n = 1,2, · · ·

ζ(−2n) = 0 (trivial zeros) ζ(1− 2n) = −B2n

2n

ζ(2n) =
(2π)2n|B2n|

2(2n)!
ζ(1 + 2n) = ???

where
x

ex − 1
=
∞∑

m=0

Bm
xm

m!
.
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The “Completed” Zeta Function Z (s)

The function

Z (s) := π−s/2(s/2− 1)!ζ(s)

is meromorphic on all of C.

There are exactly two poles, which occur at s = 0,1. The only
zeros of Z are the nontrivial zeros of ζ.

The functional equation becomes

Z (s) = Z (1− s)
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Hadamard Product Formula

Theorem (Hadamard, 1893)

s(s − 1)Z (s) =
∏
α

(
1− s

α

)
where a nontrivial zero α of ζ(s) is paired with its “twin” 1− α.

We can combine the Hadamard and Euler product formulas to
count primes with nontrivial zeros or vice versa.
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Counting Primes with Zeros

Let π(x) denote the number of primes less than or equal to x .

For <(s) > 1

log(ζ(s))
s

=

∫ ∞
0

π̃(x)x−s−1 dx

where π̃(x) = π(x) + 1
2π(x

1/2) + 1
3π(x

1/3) + · · · .

Fourier inversion gives

π̃(x) = − 1
2πi
· 1

log(x)

∫ a+i∞

a−i∞

d
ds

(
log(ζ(s))

s

)
xs ds (a > 1)
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Counting Primes with Zeros
We get

π̃(x) = Li(x)−
∑
α

Li(xα)− log(2) +
∫ ∞

x

dt
(t3 − t)log(t)

where Li(x) =
∫ x

0
dt

log(t) ∼
x

log(x) .

Möbius inversion gives

π(x) =
∞∑

n=1

µ(n)
n

π̃(x1/n)

= 〈π(x)〉+ πosc(x)

PNT∼ 〈π(x)〉 ∼ Li(x)

PNT = Prime Number Theorem (Hadamard and de la
Vallée-Poussin, 1896): @nontrivial zero α on the line <(s) = 1.
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R : <(s) ∈ [−ε,1 + ε],=(s) ∈ [−E ,E ]

2N(E)− 2 =

#zeros−#poles in R =

1
2πi

∫
∂R

Z ′(s)
Z (s)

ds

=
4

2π
=
∫ 1

2+iE

1+ε

Z ′(s)
Z (s)

ds

=
2
π
= log(Z (1/2 + iE))
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Counting Zeros with Primes

N(E) = 1 +
1
π
= logπ−

1
4−i E

2 +
1
π
= log

(
−3

4
+ i

E
2

)
! +

1
π
= log ζ

(
1
2
+ iE

)

= 1− E
2π

logπ +
E
2π

log
E
2
− E

2π
− 1

8
+ · · ·+ 1

π
= log ζ

(
1
2
+ iE

)

“ = ”
E
2π

(
log

E
2π
− 1
)
+

7
8
+ · · ·︸ ︷︷ ︸+

−1
π

∑
p

∞∑
m=1

1
m

sin(mETp)

e(m/2)λp︸ ︷︷ ︸
〈N(E)〉 Nosc(E)

Here Tp = λp = log(p)
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Quantum Mechanics (QM)



Wave Function

The basic quantity in QM is a complex function ψ (x, t) ∈ L2

called the wave function.

The axioms of QM are:

1. Interpretation: The probability of finding the particle at
position x at time t is |ψ(x, t)|2.

2. Quantization: Every physical observable has a
corresponding self-adjoint operator, for which the
eigenvalues correspond to the values which can be
observed in an experiment.

For example the momentum p has the corresponding
operator p̂ = −i~ d

dx
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The Quantum Hamiltonian
The Hamiltonian operator is

Ĥ =
p̂2

2m
+ V (x)

and its eigenvalues En correspond to energy levels

Ĥψn = Enψn
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Schrödinger’s Equation

3. Dynamics: The wave function evolves according to:

i~
∂ψ

∂t
= Ĥψ

Its formal solution is

ψ (x, t) = Û(t)ψ (x,0)

where Û (t) = exp
[
− i
~

Ĥt
]

=

∫
K
(
x,x′; t

)
ψ
(
x′,0

)
dx′

where K is the ‘propagator’, giving the probability amplitude for
the particle to move from x′ to x after time t .

Its Fourier transform (t → E) is the Green function G+ (x,x′;E).
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ψ (x, t) = Û(t)ψ (x,0)
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= Ĥψ

Its formal solution is
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Göttingen (1912-1914)

“[Landau] asked me one day: ‘You know some physics. Do you
know a physical reason that the Riemann hypothesis (RH)
should be true?’... I answered, if the nontrivial zeros... were so
connected with the physical problem that the RH would be
equivalent to the fact that all the eigenvalues of the physical
problem are real.” —George Pólya

Let αn = 1
2 + iEn denote the nontrivial zeros of ζ(s). Can we

interpret the En as eigenvalues of a self-adjoint operator?

This would imply the RH! Hilbert also had this idea.
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The Riemann Operator



Unstable Equilibriums

Nearby an equilibrium point
x0 = 0, the potential is

V (x) = V (0) + V ′(0)x

+
1
2

V ′′(0)x2 + . . .

If the equilibrium point is
unstable, the Hamiltonian is

H =
p2

2m
− 1

2
K x2 (K > 0)

By rescaling the coordinates
and rotating the x− p plane,
one gets

H = xp

Namely, this Hamiltonian
describes the general motion
of a particle about an unstable
equilibrium point.
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Energy Levels of the Riemann Operator
For any (classically bound) Hamiltonian H(x,p),

N(E) = “# of energy levels En ≤ E” = A (E) /2π~+ O (1)

where A(E) = “area under the graph of H(x,p) = E”.

The Riemann operator H = xp
is unfortunately unbounded.
We truncate a Planck cell of
sides lx, lp , and get

N(E) =
E
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(
log

E
2π~

− 1
)
+· · ·
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The Oscillatory Part of the Energy Levels

Note:

N(E) =

∫ E

0
n(Ẽ)dẼ

Fact: The Green function satisfies:

n(E) = −1
π
=
∫

G+(x,x;E)dx

This means that we can approximate the energy levels density
function by integrating the Green function!
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Feynman Path Integrals

In the Lagrangian formulation
a particle takes a unique path
that minimizes the action S.

A ‘quantum particle’ takes all
possible paths connecting two
points x′ and x!

The Green function is given by
sampling all possible
trajectories with the right
weighting function:

∑
paths

aj
(
x,x′;E

)
e

i
~Sj (x,x′;E)

Taking the limit x′ → x we get
2 types of loops:

I zero length: 〈n(E)〉.

I positive length: nosc(E).
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Comparison Assuming RH and Chaotic Hamiltonian

Number Theory Physics
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More Evidence?



Spacings of Phases for Riemann Zeros

∃functions r , θ : R→ R s.t. ζ(1/2 + iE) = r(E)e−iθ(E)

Assume the RH. Define φn := θ(En)/π.

Theorem (Montgomery, 1972)
If the Fourier transform f̂ is C∞ and supported in (−1,1), then

lim
N→∞

1
N

∑
m,n≤N

f (φm − φn) = f (0) +
∫ ∞
−∞

f (x)K (x)dx

where K (x) = 1−
(

sin(πx)
πx

)2
. Conj: we can take f = 1[α,β].
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A Chance Encounter in 1972

The number theorist Hugh Montgomery told physicist Freeman
Dyson of his result about the distribution of spacings φm − φn
over tea at Princeton’s Institute for Advanced Study...

Dyson noticed that these patterns for Riemann zeros were the
same as those predicted by quantum physicists for energy
levels in the nucleus of heavy atoms via random matrix theory.
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Spacings of Eigenphases of Random Unitary Matrices

Let A ∈ U(N) (N × N matrices : AA
T
= 1) w/ eigenvalues eiθn .

Assume θn ∈ [0,2π). Define φn := Nθn/2π.

Theorem (Dyson, 1963)
If f (x)→ 0 as x → ±∞, then
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. In fact, we can take f = 1[α,β].
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Thank You!
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