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1. Newtonian Mechanics

According to Newton’s laws of motions, which were first published on July 5,
1687 in the book “Philosophiae Naturalis Principa Mathematica”, space is the 3-
dimensional Euclidean space R3, in which the motion of a body is governed by
Newton’s second law1: The rate of change of the momentum of a body is propor-
tional to the resultant force acting on the body and is in the same direction. If
we represent the position of the body as a function of time by a vector ~x (t), its
velocity as ~v (t) = ~̇x (t), its acceleration as ~a (t) = ~̈x (t) and its mass is constant in
time, we may express Newton’s second law symbolically by:

~F = m~a

where ~F is the total force exerted on the body andm is the mass of the body. This
is a second-order differential equation for the position of the body ~x (t) : R → R3,
which has a unique solution given the position ~x (t0) and the velocity ~̇x (t0) of the
body at a given time t0 (assuming that the force ~F is a nice-enough function, e.g.
~F ∈ C1.)

The work done by the force ~F when the body is going from point 1 to point 2 is
defined to be:

W12 =
ˆ 2

1

~F · d~l

and thus for a constant mass m (which will be assumed from now on),

W12 =
ˆ 2

1

~F · d~l

= m

ˆ 2

1

d~v

dt
· ~vdt

=
m

2

ˆ 2

1

d

dt

(
~v2
)
dt

=
m~v2

2

2
− m~v2

1

2

1An equivalent way of stating Newton’s second law, is using Newton’s principle of determinacy:
“The initial state of a mechanical system (namely, the position and velocity at some moment of
time) uniquely determines all of its motion”. In particular, the initial positions and velocities
determine the acceleration. In other words, there is a function ~f such that ẍ = ~f (x, ẋ, t). Here
the function ~f corresponds to the force exerted on the body divided by the mass of the body.
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The scalar quantity m~v2

2 is called the kinetic energy of the body and is denoted
by T , so that the work done is equal to the change in the kinegtic energy:

W12 = T2 − T1

If the force field ~F is conservative, i.e. is independent of the path in which the
body travels from the point 1 to the point 2, vector calculus tells us that ∇× ~F = 0.
But by Helmholtz’s decomposition theorem∇× ~F = 0 if and only if ~F is the gradient
of some scalar function of position V (remember that we assume ~F ∈ C1). Thus
in such a case ~F = −∇V (x), and V is called the potential, or potential energy of
the force F . The sign is taken so that the potential energy of a stone is larger if
the stone is higher off the ground. The reason the force field ~F (and the system) is
called conservative in such a case, is that we have,

T2 − T1 = W12

=
ˆ 2

1

~F · d~l

= −
ˆ 2

1

∇V · d~l

= V1 − V2

Therefore if we define a new scalar quantity, E = T + V , called the total energy
of the body, E is conserved and

T1 + V1 = T2 + V2

or
m~v2

1

2
+ V1 =

m~v2
2

2
+ V2

This is the energy conservation theorem for a body (or ’the law of conservation
of energy’ if you wish).
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2. Enter Lagrange

2.1. Lagrangian Mechanics2. About a century later, in 1788, the mathematician
and physicist Joseph Lagrange published a book called “Mécanique Analytique”, in
which he tried to reveal the true nature of that physical law in a more fundamen-
tal context. Lagrange believed that there must be some inherent beauty in the
structure of things, and Nature, according to Lagrange, should be optimal. We will
follow the same philosophical ideas that led Lagrange, Euler and Hamilton to the
formulation of Lagrangian mechanics. For simplicity (and since it’s quite difficult
to draw >4 dimensional spaces...) we will take a system of one body traveling in a
one dimensional space.

Fixing any two points (x1, t1) , (x2, t2) in space and time, and assuming that the
body travels from the point x1 at time t1 to the point x2 at time t2, a priori, the
body may take any path that connects these two points. It is evident that a body
travels in one specific path, so we need a way to single out the unique path in which
the body will travel from all the other possible paths.

Thus, Lagrange constructed a functional on the sets of all paths starting at
(x1, t1) and ending at (x2, t2), that has the following form:

S [γ] =
ˆ
γ

L (x (t) , ẋ (t) , t) dt

The above functional is called the action of the system, and is obtained by
integrating the Lagrangian of the system over the path γ connecting (x1, t1) to
(x2, t2). Since Newtonian mechanics tells us that the evolution of a mechanical
system is completely determined once we know the position and velocity of the body
at a given time, we assume that the Lagrangian is only a function of the position
x (t), the velocity ẋ (t) and the time t, though it is not difficult to generalize this idea
to include derivatives of x (t) of any order. Our goal will be to find a Lagrangian L
for which the real path of the body will be an extremal of the action. First, we need
to find the extremal of the action S, depending on our Lagrangian L. This leads

2A very thorough discussion of Lagrangian mechanics can be found in
[Herbert Goldstein(2001), V. I. Arnold(1997)]
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to the following theorem, which was proven in a correspondence between Euler and
Lagrange in the 1750s:

Theorem 2.1. (Euler-Lagrange Equation) If x (t) ∈ C1 ([t1, t2]) is an extremal of
S and L ∈ C1, then for all t ∈ [t1, t2] the following equation holds on x (t):

∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
In order to formulate things a bit more rigorously, we need to say what we mean

by “an extremal” of S. What norm do we consider for the space of all paths from t1
to t2? Since we assume that the path is a C1 function (as a result of the Existence
and Uniqueness theorem on Newton’s second law), the most natural norm to use
is the ‖ · ‖C1 .

Proof. The proof of the Euler-Lagrange equations is a very good example to the
type of arguments used in Calculus of Variations. The idea is to reduce this infinite
dimensional extremum problem to a Calculus extremum problem, and then to solve
it using standard Calculus techniques. So, we assume that x (t) is an extremal of the
action, and rewrite any C1-path γ from (x1, t1) to (x2, t2) as γλ (t) = x (t) + λy (t)
where λ ∈ R and y (t) is a path for which y (t1) = y (t2) = 0. For any such given
path y (t), the real-valued function

f (λ) = S [γλ]

should have an extremum at λ = 0, since x (t) is an extremal of S. Since f ∈ C1,
Fermat’s theorem tells us that since λ = 0 is an extremum of f , f ′ (0) = 0. Thus,
we use the chain rule3 to compute the derivative of f :

0 =
d

dλ
f

=
d

dλ

ˆ t2

t1

L (x+ λy, ẋ+ λẏ, t) dt

=
ˆ t2

t1

d

dλ
L (x+ λy, ẋ+ λẏ, t) dt

=
ˆ t2

t1

(
∂L

∂x
y +

∂L

∂ẋ
ẏ

)
dt

=
ˆ t2

t1

∂L

∂x
ydt+

ˆ t2

t1

∂L

∂ẋ
ẏdt

=
ˆ t2

t1

∂L

∂x
ydt+

∂L

∂ẋ
y |t2t1 −

ˆ t2

t1

d

dt

(
∂L

∂ẋ

)
ydt

=
ˆ t2

t1

(
∂L

∂x
− d

dt

(
∂L

∂ẋ

))
ydt

3Notice that we must assume that the position x and the velocity ẋ are independent variables,
otherwise the use of the chain rule results in a more complicated relation. We may do that, for
example, by assuming that the Lagrangian L is a function of three variables L (a, b, c). Thus, by
writing ∂L

∂x
we actually mean ∂L

∂a
|x, and similarly ∂L

∂ẋ
means ∂L

∂b
|b=ẋ.
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where the term ∂L
∂ẋ y |

t2
t1 vanishes since by assumption y (t1) = y (t2) = 0. The

equality ˆ t2

t1

(
∂L

∂x
− d

dt

(
∂L

∂ẋ

))
ydt = 0

holds for all paths y with y (t1) = y (t2) = 0. Since a path is continuous by
definition, a necessary condition for the equality to hold is that ∂L

∂x −
d
dt

(
∂L
∂ẋ

)
= 0,

namely that the Euler-Lagrange equation will be satisfied. �

Even though we will soon use Euler-Lagrange equation to derive Newton’s second
law, it is important to note that the equation may be used to find the extremum
of any functional of the form considered above! In fact, Euler and Lagrange first
developed this technique in order to solve a different problem (the tautochrone
problem), and only later Hamilton used it to describe general mechanical systems.
Let’s look at an example:

Example. The shortest path between two points in a plane
Given a C1-function x (t) : [t1, t2] → R, the length of the graph of the function

is given by:

S =
ˆ b

a

√
1 +

(
dx

dt

)2

dt

This is an example of an extremum problem on the set of all C1-functions defined
on [t1, t2]. In this case, the Lagrangian is:

L (ẋ) =
√

1 + ẋ2

The condition that the curve be the shortest path is that S be minimal. In this
case, ∂L∂x = 0 and ∂L

∂ẋ = ẋ√
1+ẋ2 and Euler-Lagrange equation is:

0 =
d

dt

(
ẋ√

1 + ẋ2

)
Therefore

ẋ√
1 + ẋ2

= c

where c is a constant. Thus ẋ = a is a constant. Integrating with respect to t,
we get

x (t) = at+ b

which is the equation of a straight line. It is important to notice that we just
proved that the straight line is an extremum path, but not a minimum! There are
more advanced Calculus of Variations techniques that allow us to prove (using the
notion of a second variation of a functional, which corresponds to the notion of a
second derivative of a function) that this is actually a minimum.

So far we found a necessary condition that the real path of the body must satisfy
in order to be an extremum of the action functional, but what is the Lagrangian L
for a mechanical system? Comparing Newton’s second law:

−∂V
∂x

=
d

dt
(mẋ)

with the Euler-Lagrange equation:
∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
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These two equations will be equivalent, if the left-hand-side and the right-hand-
side of both equations coincide. Thus, we set

∂L

∂x
= −∂V

∂x
∂L

∂ẋ
= mẋ

(here we take the constant of integration with respect to t to be zero.) Integrating
the second equation with respect to ẋ, we see that

L =
mẋ2

2
+ c (x)

Substituting it back to the first equation,

c′ (x) = −∂V
∂x

Therefore c (x) = −V (x) (where we take the constant of integration to be zero
again4), and the Lagrangian L is

L = T − V
Hence, by taking L = T −V , Euler-Lagrange equation is equivalent to Newton’s

second law. So a different way of stating the laws of mechanics is as follows:

Theorem 2.2. (Hamilton’s principle of stationary action5) The motions of a me-
chanical system coincide with the extremals of the action functional, where the La-
grangian of the system is the difference between the kinetic and the potential energy,
L = T − V .

Example 2.3. Harmonic Oscilliator
Definitely the most important example in classical physics is the harmonic oscil-

liator, as it is the first approximation to the motion of a particle displaced from its
equilibrium position.

The potential of a 1-dimensional simple harmonic oscilliator is V (x) = 1
2kx

2 .
The kinetic energy is T = 1

2mẋ
2, so that the Lagrangian is

L = T − V

=
1
2
mẋ2 − 1

2
kx2

4Notice that the Lagrangian is not unique! It is unique up to adding another a solution to
Euler-Lagrange’s equation. We take the constants of integration to be zero because it’s sufficient
in that case to derive the equation of motion, and because it keeps things simple.

5The origin of this is principle is actually the ’principle of least action’, whose historical back-
ground is rather controversial. There are several such principles: (1) Fermat’s principle of least
time (stated by Fermat in a letter he wrote in 1662): “The path taken between two points by a
ray of light is the path that can be traversed in the least time.” (2) Principle of least action (The
credit is usually given to Maupertuis who stated it in 1744, but Euler stated it in the same year
slightly later. Also, a copy of a letter that Leibniz sent in 1707 contains the same principle. The
original letter has been lost, and even the king of Prussia entered the debate about the origin
of the principle...): “The motion of a body is an extremum of the functional

´
pdq” where p is

the momentum of the body, and q is the generalized coordinate. See the section ’Lagrangian
mechanics on manifolds’ for more information. (3) Hamilton’s principle of stationary action as
we stated it (stated by Hamilton in his work “On a General Method in Dynamics” from the year
1835.) (4) D’Alembert’s principle using the notion of a virtual displacment (Which is out of the
scope of this paper.)
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∂L
∂x = −kx and ∂L

∂ẋ = mẋ, consequently, the Euler-Lagrange equation is

−kx =
d

dt
(mẋ)

Assuming that the mass is constant with time, we have,

−kx = mẍ

which is Hooke’s law. Defining ω =
√

k
m , we have the second-order differential

equation

ẍ+ ω2x = 0

The general solution for this equation can be written as

x (t) = A sin (wt+ φ)

where A is the amplitude, and φ is called the phase. Both determined by the
initial conditions.

2.2. So why does Nature extremize T − V ? While developing the Lagrangian
mechanics, we based our treatment very strongly on Newton’s second law. Actually,
when we began, we set our goal to be a rederivation of Newton’s second law from
an optimization problem point of view. But why does nature extermize T − V ?
What is so special about it?

Remember, that the Lagrangian of the system is T − V only for conservative
forces. In such a case, we have already seen before that the total energy of the
system E = T + V is conserved. So quantitatively, the Lagrange of the system
is also L = E − 2V = 2T − E. The kinetic energy T measures the amount of
motion in the system, i.e. it is greater as the bodies are moving around more. On
the other hand, the potential energy measures how much energy is stored in the
system, that is, it measures how much could happen, but isn’t happening yet (as the
word ’potential’ means). Thus the Lagrangian measures (in whatever way you wish
to interpret it!) how much the system is active6: as there is more kinetic energy,
the Lagrangian is greater, but as there is more potential energy, it is smaller. In
most mechanical systems (but not all!) the real path of the body is not just an
extremum of the action, but a minimum of it. Thus the system evolves in such a
way that the action of the system, i.e. the total ’activity’ of the system is minimal
- so Nature likes to be as lazy as she can!7

6Notice that when we interpret the potential energy V , we actually invoke Newton’s second
law once more. The potential energy were defined so that we will have conservation of energy in
mechanical systems, based on Newton’s second law.

7Here we should remember again, that the Lagrangian we chose is not unique, and indeed there
are many other choices for the Lagrangian function that will yield the same equation of motion.
So in fact, we can find many other different Lagrangians that will be extremized. It seems that
the fact that the Lagrangian is not unique makes the interpretation of the Lagrangian function as
a measure the the ’activeness’ of the system irrelevent. After all, we could have picked a different
Lagrangian that gives the same equation of motions. But yet still, this Lagrangian does yield the
’right’ equation of motion, and thus, one (out of many) possible interpretations for the evolution
of a mechanical system will be the ’lazyness’ of the system, as stated above.
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2.3. Lagrangian mechanics on manifolds8. We start with some terminology.
We stated before that according to Newtonian mechanics, space is the 3-dimensional
manifold R3. If we have a system with n bodies, the position of the ith body can
be described by a vector function ~xi (t) : R→ R3. The direct product of n copies of
R3 is called the configuration space of the system of n bodies, and the n mappings
~xi define one mapping

x : R→ R3n

of the time axis into the configuration space, called the the motion of the system.
Notice that the configuration space in this case is the 3n-dimensional manifold
R3n. In a more general context, when considering the motion of the system it
may be necessary to take into account the constraints that limit the motion of
the system. For example, the beads of an abacus are constrained to 1-dimensional
motion by the supporting wires. Many other examples of constrained systems can
easily be furnished. Gas molecules within a container are constrained to move
inside the container by the walls of the vessel. In such a case, we classify the
possible constraints into two groups. If a constraint can be expressed as equations
connecting the coordinates of the bodies (and possibily the time), i.e. has the form

f (x, t) = 0

(remember that x gives us the position of all the bodies in the system), then
the constraint is said to be holonomic. The constraint on the beads of an abacus
discussed earlier is a holonomic constraint. If the constraint is not expressible in
this fashion, it is called nonholonomic9. For example, the walls of a gas container
constitute a nonholonomic constraint.

When there are no constraints on the system, we already mentioned that the
configuration space is the 3n-dimensional manifold R3n. More generally, if there
are m holonomic constraints on the system, the configuration space is a (3n−m)-
dimensional manifold M (“sitting” in an ambient manifold R3n). The dimension
of the configuration space M is called the number of degrees of freedom. The
3n −m coordinates q =

(
q1, q2, . . . , q3n−m

)
we pick to describe the motion of the

system in a neighborhood of a point are called generalized coordinates (god knows
why people use q instead of x, but it is a rather standard notation.) A tangent
vector to the configuration space is thought of as a velocity vector; its components
with respect to the coordinates q are written as q̇ =

(
q̇1, q̇2, . . . , q̇3n−m

)
rather

than
(
v1, . . . , v3n−m), and are called generalized velocities. Before, the Lagrangian

was a function of the position, the velocity and time. Now, if the Lagrangian
is independent of time (as it was in our previous example) we can simply say
that the Lagrangian is a function on the tangent bundle TM of the configuration
space M , namely L : TM → R and L = L (q, q̇) (remember that the tangent
bundle TM has a natural manifold structure by taking the local coordinates to be(
q1, . . . , q3n−m, q̇1, . . . , q̇3n−m

)
).

A quite remarkable fact about Euler-Lagrange equation is that they hold on any
configuration space as long as we interpret things in the right way. Instead of

∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
8More information on the subject can be found in [V. I. Arnold(1997), Frankel(2003)]
9Nonholonomic constraints will not be considered in this paper
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as it was for one body moving in one dimension, we simply have to replace the
position x with the generalized coordinate qi, and the velocity ẋ with the generalized
velocity q̇i, and we get (3n−m)-equations called the Euler-Lagrange equations:

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)

where i ranges from 1 to 3n−m. Notice that these equations hold for any set of
generalized coordinates! This allows us to exploit the symmetry of the problem in
question by choosing the right set of generalized coordinates. An example will be
considered after the next paragraph.

For a conservative system of one body, we got the Lagrangian L = T − V =
m ẋ2

2 − V (x). Thus we see that ∂L
∂ẋ = mẋ is the momentum of the body, and

similarly, ∂L∂x = −∂V∂x = F is the force exerted on the body. Consequently, we define
pi = ∂L

∂q̇i to be the generalized momenta and Qi = ∂L
∂qi to be the generalized forces.

Notice that unlike the case of a conservative system, the generalized momenta
and the generalized forces won’t necessary coincide with the actual momentum of
a body, or with the actual force exerted on it! The following table represents the
analogue between the Lagrangian formulation as we did it earlier, to the Lagrangian
formulation on a manifold.

Before After: Lagrangian mecahnics on a manifold
No constraints m holonomic constraints
Space is R Space is R3

Configuration space is R Configuration space is a (3n−m)-dim. manifold
Position x Generalized coordinates q =

(
q1, . . . , q3n−m

)
Velocity v = ẋ Generalized velocities q̇ =

(
q̇1, . . . , q̇3n−m

)
Momentum p = mẋ = ∂L

∂ẋ Generalized momenta pi = ∂L
∂q̇i

Force F = ∂L
∂x Generalized forces Qi = ∂L

∂qi

EL equation ∂L
∂x = d

dt

(
∂L
∂ẋ

)
EL equations ∂L

∂qi = d
dt

(
∂L
∂q̇i

)

Example. A planar pendulum: Due to the holonomic constraint imposed by the
length of the wire l, the pendulum is constrainted to move on a circle. Thus
the configuration space is the circle S1, which is a 1-dimensional manifold. As a
1-dimensional manifold, this system has one degree of freedom. We can take the
generalized coordinate to be the angle θ (t) created by the pendulum. That is, if the
length of the wire is l, we may write the position of the ball as ~x = (l cos θ, l sin θ).
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The velocity is the derivative of the position, namely,

~̇x = (−l sin θ, l cos θ) θ̇

We have, ~̇x · ~̇x = l2θ̇2, so the kinetic energy is

T =
1
2
ml2θ̇2

The potential energy is V = mgh where h denotes the height of the ball above
its equilibruim position, and is h = l (1− cos θ). Thus the potential energy is:

V = mgl (1− cos θ)

And the Lagrangian is

L =
1
2
ml2θ̇2 −mgl (1− cos θ)

We only need to solve one Euler-Lagrange equation for the generalized coordinate
θ (as it is a 1-dimensional configuration space). ∂L

∂θ = −mgl sin θ and ∂L
∂θ̇

= ml2θ̇.
Therefore Euler-Lagrange equation yields

−mgl sin θ = ml2θ̈

Canceling ml2 from both sides of the equation, we have,

θ̈ +
g

l
sin θ = 0

If we assume only a small change in the angle, namely θ � 1, sin θ ' θ in first
order and we get:

θ̈ +
g

l
θ = 0

Setting ω =
√

g
l we get the same solution we get earlier for the harmonic oscil-

lator, namely:
θ (t) = A sin (ωt+ φ)

2.4. Nonconservative forces. One might notice that throughout our analysis of
dynamical systems, we kept assuming that all forces are conservative. Well, yeah,
many forces are conservative, but what about forces that are not conservative? For
example, the electromagnetic forces on a moving charge depend on the velocity
of the charge, so they will not be conservative. A resolution to this problem is
provided by the notion of a generalized potential. Euler-Lagrange equations still
work even if there is no potential function, V , in the usual sense, providing that
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the generalized forces are obtained from a function U : TM → R, U (q, q̇) by the
prescription10:

Qi = −∂U
∂qi

+
d

dt

(
∂U

∂q̇i

)
In such case, Euler-Lagrange equations still hold, if we take the Lagrangian to

be
L = T − U

Consequently, U is called a generalized potential. Systems for which all forces
(except the forces of constraints) are derivable from generalized potential are called
monogenic. Notice that if U is indepenet of the generalized velocities q̇, the gener-
alized potential reduces back to our previous notion of a potential function. Thus
all conservative systems are monogenic.
Example. The electromagnetic field

Consider an electric charge, q, of mass m moving at a velocity, ~v, in a charge-fre
region containing both an electric field, ~E, and a magnetic field, ~B, whcih may
depend upon time and position. The force the charge experiences is the Lorentz
force, given by:

~F = q
(
~E + ~v × ~B

)
We know from Maxwell’s equation that ~E and ~B are derivable from a scalar

potential φ and a vector potential ~A by11

~E = −∇φ− ∂ ~A

∂t
~B = ∇× ~A

If we take our velocity-dependent potential energy to be:

U = qφ− q ~A · ~v
the Lagrangian, L = T − U , is

L =
1
2
mv2 − qφ+ q ~A · ~v

And the x-component, for example, of Euler-Lagrange equations gives:

−q ∂φ
∂x

+ q
∂ ~A

∂x
· ~v =

d

dt
(mẋ+ qAx)

which is equivalent to:

mẍ = q

(
vx
∂Ax
∂x

+ vy
∂Ay
∂x

+ vz
∂Az
∂x

)
− q

(
∂φ

∂x
+
dAx
dt

)
10But what are the generalized forces in such a case? We defined the generalized forces in

terms of the Lagrangian, and the Lagrangian in terms of the potential energy (which is used then
again in the generalized coordinates). It seems like the definitions are somehow recursive. So we
need to find a way to define the generalized forces independently of the Lagrangian. The idea
is to define generalized forces using D’Alembert’s notion of virtual work. Since it is out of the
scope of this paper, we will summarize by saying that the generalized forces can be defined to be
Qi =

P
j F j ∂xi

∂qj , where F i are the (not generalized) forces, xi are the coordinates of the position
and qi are the generalized coordinates. Notice that if we take the generalized coordinates qi to be
our usual coordinates xi, the generalized forces are simply the forces of the system. That is the
case in most applications.

11The units are taken so that the speed of light is c = 1
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But the total time derivative of Ax is
dAx
dt

=
∂Ax
∂t

+ ~v · ∇Ax

=
∂Ax
∂t

+ vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

Combining the last two results, we obtain:

mẍ = q

(
−∂φ
∂x
− ∂Ax

∂t

)
+ q

(
vy

(
∂Ay
∂x
− ∂Ax

∂y

)
+ vz

(
∂Az
∂x
− ∂Ax

∂z

))
which is just a very noneconomical way of writing:

mẍ = qEx + q
(
~v × ~B

)
x

Comparing the other components in a similar way, we see that the Lorentz force
equation is derivable by means of the Euler-Lagrangian equations as well. In a
similar way frictional forces and many other nonconservative forces can be taken
care of.

2.5. What are the advantages of the Lagrangian formulation? My electro-
dynamics teacher used to say that the main advantage of the Lagrangian formula-
tion is that Lagrange got an equation and a whole theory named after him... But
in a more serious tone, not only that the variational principle formulation is a very
elegant way of stating the already known laws of mechanics, it has another seri-
ous advantage: Unification. The Lagrangian formulation can be easily extended to
describe systems that are not considered in Newtonian dynamics, such as the elec-
tromagnetic field, the Schrödinger equation in quantum mechanics, the standard
model for particle physics and Einstein’s equation for curved spacetime. Thus, the
Lagrangian formulation provides a framework for theoretical extensions of many
areas of physics, and most theories of physics can be described by using one single
principle - the variational principle of the Lagrangian formulation.
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