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1. Introduction

Thomas Kuhn once argued[6] that unlike a scientist, “a student in the humanities
has constantly before him a number of competing and incommensurable solutions
to these problems, solutions that he must ultimately examine for himself.” While a
critic in the humanities, for example, can choose to adopt an old theory of poetics
to explain his ideas, a scientist does not have the luxury to use an old dismissed
theory in his research. So in the presence of two competing scientific theories that
both agree with current experiments, what theory should we choose? What theory
is ’better’? Or even - which theory is the ’correct’ description of nature?

A general rule of finger for such cases is to apply Occam’s razor, attributed to
the 14th-century English logician, William of Occam. In its modern form, this prin-
ciple states that in order to distinguish between two equally explanatory theories,
one should choose the simplest one. For both practical and aesthetical reasons,
picking the simplest theory will make our life easier as it makes the explanation
easier to follow and work with, and sometimes make the natural world seem more
appealing. What is it that makes us expect nature to be simple, beautiful and
aesthetically appealing is a whole different matter which we will not address here,
but for practical reasons having our theory as simple as possible is essential.

There is another generally accepted rule for distinguishing between two equally
explanatory theories: Unification. We not only want our theory to be as simple as
it gets, we also want it to account for as many phenomena as possible. Different
phenomena in nature often seem to be closely related, so why for example, should
we expect to have a different theory for the microcosmos than the one we have for
the macrocosmos? We would like a theory that explains the universe as a whole!

There have been many attempts to unite the concepts in physics into one con-
sistent theoretical framework. In the 17th century Isaac Newton[9] explained the
motion of all heavenly bodies in our solar system, but also cannonballs on earth
using his law of universal gravitation. Later on in the 19th century, James Clerk
Maxwell[7] completed the development of his theory of electromagnetism, which
united the electric and magnetic fields into one entity - called the electromagnetic
field. Maxwell even demonstrated that light is a manifestation of such an elec-
tromagnetic field. This fact that was later confirmed experimentally by Heinrich
Hertz in 1887, essentially made optics into a subfield of the electromagnetic theory.
In 1905, Albert Einstein[2] fully explained the unity of electricity and magnetism
into one field. Hermann Minkowski[8] showed that it can be given a simple math-
ematical description if we unite space and time into a single entity, which we now
call spacetime. There have been many other attempts to unite other theories and
seemingly distinct concepts in physics into one, single idea.
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The main goal of this paper is to review the relationships, the differences and
some of the attempts to unite the most stubborn of all physical concepts: gravity
and her younger brother the electromagnetic field. A secondary goal of this paper
is to convince the reader that despite a few apparent differences between the two
fields, the remarkable resemblance between them that appears in so many different
forms must mean that they are the manifestation of the same notion. Though in
the present time this unification has not yet taken place, we can only hope that it
is inevitable.

2. A first evidence

In the following section we shall consider the first mathematical description of
the gravitational field and of the electric field, leading to several preliminary resem-
blances and differences.

In Newton’s work Philosophiae Naturalis Principia Mathematica[9], Newton’s
law of universal gravitation is stated as follows:

“Every particle of matter in the universe attracts every other particle with a
force that is directly proportional to the product of the masses of the particles and
inversely proportional to the square of the distance between them.”

We may state the law mathematically as1:

~Fg = −G Mm

|~r12|2
r̂12

where ~Fg is the gravitational force exerted on body #1 due to body #2, G is
the gravitational constant, m and M are the masses of the first and second body
respectively, and ~r12 is a vector pointing from the second to the first body. The
French physicist Charles Augustin de Coulomb developed an analog of Newton’s
law of gravity for the electric force, in a law that bares his name. Coulomb’s law
for the electrostatic force may be stated as:

“The magnitude of the electrostatic force between two point electric charges is
directly proportional to the product of the magnitudes of each charge and inversely
proportional to the square of the distance between the charges.”

This law may be stated mathematically as:

~Fe = K
Qq

|~r12|2
r̂12

where ~Fe is the electrostatic force exerted on body #1 due to body #2, K is
the electrostatic constant, q and Q are the charges of the first and second body
respectively, and ~r12 is a vector pointing from the second to the first body.

Before discussing the properties of these two laws, I would like to tell about
my first encounter with Coulomb’s law. After studying Newton’s law of gravity
for a few months in high-school, we started discussing electromagnetism, starting
of course with Coulomb’s law. When my teacher wrote Coulomb’s law on the
blackboard for the first time, I remember getting utterly excited about the striking
resemblance between Coulomb’s law to Newton’s law, so I announced to the entire
class “Wow! It is exactly the same as Newton’s law!”. Unfortunately my teacher
was less enthusiastic about it and completely ignored my remark...

1Throughout the paper, we use SI units.
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So is there any connection between the two, other that the apparent similarity
between the two equations? Even though that neither Newton’s law nor Coulomb’s
law are considered to be a complete mathematical description of the gravitational
and electric forces, they provide us with a very good approximation of nature in the
case of slow velocities relatively to the speed of light. Mathematically, Newton’s
law and Coulomb’s law are almost completely identical. Both forces are inversely
proportional to the distance between the two bodies, a fact that can be explained
as a conservation of flux, as the surface area of a sphere in three-dimensional space
being 4πr2. Both forces are proportional to the property of the body that affects
that specific force: the gravitational force is proportional to the product of the
masses while the electrostatic force is proportional to the product of the electric
charges. But these fascinating similarities also reveal a few fundamental differences
between the two forces. Since the constants in the two forces, G and K have been
observed to be positive, the appearance of a minus sign on the gravitational force
has a fundamental affect of its behavior. Since the mass of a body is conjectured to
be always positive, the gravitational force always attracts. On the other hand, the
electrostatic force might attract or repel, depending on the charges at hand. For the
electrostatic force, like charges repel each other (the opposite of the gravitational
force) while opposite charges attract each other.

Keeping in mind Newton’s second law ~F = m~a reveals an even more essential
difference between the two forces. Since the mass of the body appears on the
right-hand-side of Newton’s law, the acceleration due to the gravitational force is:

~ag = −G M

|~r12|2
r̂12

while the acceleration due to the electrostatic force is:

~ae = K
( q
m

) Q

|~r12|2
r̂12

We can see that the mass of the first body does not affect its motion in a
gravitational field, a fact that plays an important role in Einstein’s equivalence
principle and consequently on the theory of general relativity. The acceleration due
to the electrostatic force, on the other hand, does depend on the mass of the first
body and also on its charge. In fact, it only depends on the ratio between its charge
and its mass, namely q

m . Considering the relative strength of the two forces might
dim the early enthusiasm about their similarities. We consider the forces exerted
on an electron due to the presence of a proton. Computing the ratio between the
magnitudes of the two forces yields:

Fe
Fg

=
Ke2

Gmemp

=
9× 109Nm2

C2 ·
(
1.6× 10−19C

)2
6.67× 10−11 m3

kg·s2 (9.1× 10−31kg) (1.67× 10−27kg)

= 2.27× 1039

so the electrostatic force between an electron and a proton is 39 order of magnitudes
stronger than the gravitational force between the two! The gravitational force is
nearly irrelevant if you consider the motion of two charged particles!
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Yet still, though the three differences we discussed between gravity and the
electrostatic force seem to make the two be completely distinct, in the following
sections we will see how the development of Maxwell’s equations and later on the
theory of general relativity strengthen the first impression - there should be some
deep intrinsic connection between the two forces.

3. Maxwell’s Equations

Since the introduction of Coulomb’s law, our understanding of the electric force
changed dramatically in less than a century. Faraday, Henry, Helmholtz, Ampère
and others revealed a strong connection between the electric and the magnetic forces
through experimental evidence, and deduced the mutual effect of the two forces on
each other. This led Faraday to coin the term ’field’, which today is considered to
be a more fundamental concept than that of a ’force’. Fields do not only dictate
the motion of bodies, but they also have independent physical reality since they
carry energy and may interact with each other. These ideas led to the creation
of the first unified field theory in physics, when James Clerk Maxwell[7] corrected
Ampère’s law and provided four equations that together with the Lorentz force
law, produce a complete description of all electromagnetic phenomena known in his
time. Maxwell’s equations may be written as:

∇ · ~E =
ρ

ε0

∇ · ~B = 0

∇× ~E +
∂ ~B

∂t
= 0

∇× ~B − µ0ε0
∂ ~E

∂t
= µ0

~J

where ~E and ~B are the electric field and the magnetic field respectively, ρ is the
total charge density, ~J is the total current density, and ε0 and µ0 are the electric
and the magnetic constants, respectively. The Lorentz force law gives the force ~F
exerted on a point charge q due to the electromagnetic fields, and is given by:

~F = q
(
~E + ~v × ~B

)
where ~v is the velocity of the particle.

The first pair of Maxwell’s equations are Gauss’s law (equivalently, Coulomb’s
law) and Gauss’s law for magnetism. The second pair of Maxwell’s equations are
Faraday’s law of induction and Ampère’s law which give the evolution of the elec-
tric and magnetic fields in time. One should notice that even though Maxwell’s
equations are a set of eight scalar equations, the electromagnetic field has only six
components ( ~E and ~B). The reason for that is that the two Gauss’s laws give a
restriction on the plausible physical fields, and not really determine their evolution.

Even though the electric field and the magnetic field seemed to be so strongly
related, they were considered to be two separate fields in the time of Maxwell.
Albert Einstein’s work[2] in 1905 on the special theory of relativity revealed that
this is merely a misconception. Einstein postulated that the speed of light in
vacuum is fixed and is independent of the relative velocity between any (inertial)
observer and the speed of the light source. This postulate led to a derivation of the
Lorentz transformation and concluded that the electric and magnetic fields are in
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fact the same field, perceived differently by different observers depending on their
relative velocity. This justifies the term: the ’electromagnetic field’, instead of two
separate ’electric field’ and ’magnetic field’.

In the next section we will describe general relativity. We will see that just as
Newton’s law and Coulomb’s law were closely analogous, Einstein’s field equation
is very similar to Maxwell’s equations in the right limit. This will reveal another
similarity between the electromagnetic field and the gravitational field.

4. General Relativity

4.1. Introduction. After Albert Einstein finished his special theory of relativity,
which united the electric and magnetic fields into a single ’electromagnetic’ field, he
considered the force of gravity. Newton’s theory of gravitation is not consistent with
special relativity since it invokes instantaneous influence of one body on another.
This motivated Einstein to seek a new theory of gravity. However, instead of
modifying Newton’s theory of gravitation and making it compatible with special
relativity, Einstein decided to follow a completely different path.

The key idea is that all bodies are influenced by gravity. In fact, all bodies are
influenced by gravity in precisely the same way! This notion, known as the equiv-
alence principle is manifested in Newton’s theory of gravitation by the statement
that the gravitational force on a body is proportional to its inertial mass. There-
fore, instead of describing gravity as a force ’acting at a distance’, a notion that
even Newton himself found to be unsatisfactory, the equivalence principle suggests
that the force of gravity might have to do with the structure of spacetime itself.
This led Einstein to dismiss the the notion of a ’gravitational field’, and instead,
his theory of general relativity postulates[3] that:

(1) Spacetime curves in the presence of matter according to Einstein’s field
equation,

Gab =
8πG
c4

Tab

where Gab = Rab− 1
2gabR is the Einstein tensor; Rab is the Ricci curvature

tensor, R is the scalar curvature, gab is the metric of spacetime and Tab
is the stress-energy tensor that represent the distribution of matter and
energy in spacetime.

(2) In the absence of any forces (remember, gravity is not considered to be a
force anymore!) matter travels along geodesics. Geodesics are the curved-
space analogs of straight lines.

It should be stressed that even though general relativity revolutionized our notions
of space, time and gravity, in some sense it actually got us further away from a real
unification of electromagnetism and gravity. Before general relativity, both gravity
and the electromagnetic field were considered as two fields existing independently
of the structure of space and time, however, general relativity separates the two
notions. Gravity is not a force anymore, but merely a result of the curvature of
spacetime in the presence of matter. On the other hand, electromagnetism is still
a field, separated from the structure of spacetime. We will come back to this issue
when we will discuss Kaluza’s theory of gravity and electromagnetism.

4.2. ’Weak’ gravity. Next we consider the approximation in which gravity is
“weak.” This means that the spacetime metric is nearly flat. In practice, this is a
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pretty good approximation in nature except for phenomena dealing with very strong
gravitational fields (e.g. black holes) or dealing with the large scale structure of the
universe.

We write the spacetime metric as

gab = ηab + hab

where ηab = diag (−1, 1, 1, 1) is the Minkowski ’flat’ metric and the deviation from
flat spacetime is “small.” This means that the components of hab are much smaller
than 1. Though in the following analysis we will keep writing equal signs, we will
only be interested in the first order approximation of the metric, and thus will only
retain terms that are linear in hab. Furthermore, as a convention, we will raise
indices with the help of the flat Minkowski metric ηab with one exception: the
inverse of the metric gab will still be denoted with gab. Thus, up to the first order
in hab, the inverse metric is:

gab = ηab − hab

Since ηab is constant, the Christoffel symbol (to the first order) is:

Γcab =
1
2
gcd (∂agbd + ∂bgad − ∂dgab)

=
1
2
(
ηcd − hcd

)
(∂ahbd + ∂bhad − ∂dhab)

=
1
2
ηcd (∂ahbd + ∂bhad − ∂dhab)

Since the Christoffel symbol is already first order in h, the Ricci tensor (to the first
order in h) is:

Rab = ∂cΓcab − ∂aΓccb + ΓcabΓ
d
cd − ΓcadΓ

d
bc

= ∂cΓcab − ∂aΓccb

=
1
2
ηcd∂c (∂ahbd + ∂bhad − ∂dhab)−

1
2
ηcd∂a (∂chbd + ∂bhcd − ∂dhcb)

=
1
2
∂d∂bhad −

1
2
∂d∂dhab −

1
2
∂a∂bh

d
d +

1
2
∂a∂

chcb

=
1
2

[
−�hab + ∂b

(
∂chac −

1
2
∂ah

)
+ ∂a

(
∂chbc −

1
2
∂bh

)]
where we denoted the trace of hab by h = hdd, and the wave operator (the d’Alembertian)
by

� = − 1
c2
∂2

∂t2
+∇2

It is easy to see that if we define

ξa = ∂chac −
1
2
∂ah

then the Ricci tensor is

Rab =
1
2

[−�hab + ∂bξa + ∂aξb]

The scalar curvature is

R = Raa

= −1
2
�h+ ∂aξa
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and therefore, the Einstein tensor is

Gab = Rab −
1
2
gabR

= Rab −
1
2
ηabR

=
1
2

[−�hab + ∂bξa + ∂aξb]−
1
2

[
−1

2
�h+ ∂aξa

]
= −1

2
�

(
hab −

1
2
h

)
+

1
2

(∂bξa + ∂aξb − ∂aξa)

Since the geometry of spacetime is completely determined by the metric gab, and
for any diffeomorphism φ the metrics gab and φ∗gab represent the same geometry,
there is a gauge freedom in general relativity. It can be shown[10] that to the first
order in hab, any transformation of the form

hab → hab + ∂aξb + ∂bξa

will leave the geometry unchanged. Using this gauge symmetry, we may choose our
coordinates such that

ξa = 0

so that the Einstein tensor simplifies to:

Gab = −1
2
�

(
hab −

1
2
h

)
Next we define h̄ab = hab − 1

2ηabh. Componentwise, the non-diagonal terms of
h̄ab and hab are exactly the same but the trace is reversed, i.e. tr

(
h̄
)

= −tr (h).
Finally, the linearized Einstein equation is:

�h̄ab = −16πG
c4

Tab

Notice that this is nothing other than the wave equation for the coefficients
h̄ab with a source of − 16πG

c4 Tab. This already reveals a strong similarity between
Einstein’s equation and Maxwell’s equations, namely, that in the limit of a ’weak’
gravitational field Einstein equation is nothing other than a wave equation for a
wave propagating in the speed of light. Next we will see that if one considers the
geodesic equation, then this similarity is even stronger than what it appears to be.

4.3. Maxwell again? The stress-energy tensor for a perfect fluid with no pressure
is

Tab = ρuaub

where ρ is the mass density and ua is its 4-velocity. If we consider the linearized
Einstein equation for non-relativistic speeds (v � c), then up to the first order in
v
c , the stress energy tensor becomes

Tab =
[
ρc2 ρc~u
ρc~u 0

]
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We denote φ = − h̄00
4 c2 and ~A = c2

(
h̄01, h̄02, h̄03

)
(this notation will become clear

immediately) and the linearized Einstein equation becomes:

�φ = 4πGρ

� ~A = −16πGρ
~u

c
�h̄µν = 0

where µ, ν = 1, 2, 3, a convention that we’ll keep using in this section. The unique
solution to the third equation that is well behaved at infinity is h̄µν = 0. (The
solution h̄µν = constant is also valid, but it can be eliminated by another gauge
transformation.) In order to obtain the first-order correction to the metric, namely
hab, we reverse the trace again to obtain:

hab = h̄ab −
1
2
ηabh̄

Since h̄ = 4φ
c2 , we have

h00 = −4φ
c2
− 1

2
(−1)

4φ
c2

= −2φ
c2

h0ν = h̄0ν =
~A

c2

hab = −1
2
ηab

4φ
c2

= −2ηab
φ

c2

So to the first order, the metric is

gab =


−1− 2φ

c2
Ax

c2
Ay

c2
Az

c2
Ax

c2 1− 2φ
c2 0 0

Ay

c2 0 1− 2φ
c2 0

Az

c2 0 0 1− 2φ
c2


It is worthwhile to notice that for ~A = 0, this is the same metric that leads to
Newtonian gravity. In order to interpret this result, we will have to consider the
motion of a body in such a gravitational field. In general relativity, bodies travel
along a geodesic with respect to proper time. The geodesic equation is

d2xa

dτ2
+ Γabc

dxb

dτ

dxc

dτ
= 0

Since we compute everything to the first order in v
c ,

dxa

dτ = γ (c, v) ≈ (c, v). Thus,
in this approximation d

dτ ≈
d
dt , and the geodesic equation is:

d2xµ

dt2
= −Γµ00c

2 − 2Γµ0νcu
ν

where we have dropped second-order terms. Computing the Christoffel symbols,
we see that (no summation over µ and ν here):

Γµ00 =
1
c2

(
∂φ

∂xµ
− ∂Aµ

c∂t

)
Γµ0µ = − ∂φ

c3∂t

Γµ0ν =
1

2c2
(∂νAµ − ∂µAν)
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so the geodesic equation yields:

d2~x

dt2
= −∇φ− ∂ ~A

c∂t
+
~v

c
×
(
∇× ~A

)
+ 2

∂φ

c∂t

~v

c

≈ −∇φ− ∂ ~A

c∂t
+
~v

c
×
(
∇× ~A

)
Remembering the gauge condition ξa = ∂chac − 1

2∂ah = 0, we have (for a = 0):

1
c

∂φ

∂t
+

1
2
∇ · ~A = 0

If we denote ~Eg = −∇φ − 1
2c
∂ ~A
∂t and ~Bg = ∇ × ~A, corresponding to the gravita-

tional field ~Eg and the gravitomagnetic field ~Bg, then the gauge condition and the
linearized Einstein equation gives:

∇ · ~Eg = −4πGρ

∇ · ~Bg = 0

∇× ~Eg +
1
2c
∂ ~Bg
∂t

= 0

∇×
(

1
2
~Bg

)
− 1
c

∂ ~Eg
∂t

= −4π
G

c
~J

where ~J is the mass current density, ~J = ρ~v. These equations are almost com-
pletely identical to Maxwell’s equations. Namely, the gravitational field ~Eg and the
gravitomagnetic field ~Bg evolve just as the electric field ~E and the magnetic field
~B. Therefore, both fields A body will travel along a trajectory ~x that satisfies:

m
d2~x

dt2
= m

(
~Eg +

~v

c
× ~Bg

)
Once again we see a remarkable similarity between the mathematical law that

governs the gravitational force and the law that governs electromagnetism. Both
gravity and electromagnetism satisfy similar evolution equations. Both fields will
radiate, and the speed of propagation is the speed of light (this is just a result of the
wave equation). In both cases, if the magnetic part of the field doesn’t vary with
time, the law reduces to either Newton’s law in the case of gravity or Coulomb’s
law in the case of electromagnetism. This shows that the resemblance between
Newton’s law and Coulomb’s law was not a coincidence. Just as in the case of the
electromagnetic force, the force acting on a body due to a gravitational field has
the same form as the Lorentz force, so bodies will travel in a similar way under
the influence of electromagnetic force and a gravitomagnetic force (with the one
exception, the affect of a negative charge on the trajectory.)

However, this reveals a few fundamental differences. The three differences we
mentioned when we discussed Newton’s law and Coulomb’s law remain in the case
of general relativity and Maxwell’s equations. Moreover, the process by which we
derived the equation reveals a few more differences. The gravitational Maxwell
equations are only an approximation for the true nature of gravity according to
general relativity. General relativity is a tensor theory, but electromagnetism is
described by vector fields. This fact can be used to show[3] that the leading term
that causes gravitational radiation is quadrupolar, while in Maxwell’s theory the
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leading term that causes electromagnetic radiation is a dipole. The tensorial nature
of general relativity is also the cause for some additional factors of 2 in the linearized
equations that do not exist in Maxwell’s equations. These are merely remnants
because the metric is a tensor of rank 2. And of course, Einstein’s field equation is
very nonlinear, while Maxwell’s equations are linear.

5. Kaluza-Klein Theory

5.1. Enter Kaluza. As mentioned in the previous section, Einstein’s theory of
relativity treats gravity as the curvature of spacetime, but electromagnetism is still
treated as a field similarly to its description in Maxwell’s theory, separated from
the geometry of spacetime. This fact, together with the similar structure of the
linearized Einstein equation and Maxwell’s equations, led the German physicist and
mathematician Theodor Kaluza to try and unify the two fields by introducing extra
dimensions. His key idea was that just as gravity is treated as the manifestation
of curved spacetime, the electromagnetic force should be treated similarly. He
noticed that since the electromagnetic potential has four independent components,
the scalar potential and the vector potential ~A, they can both be accommodated
in the metric if one adds exactly one more spatial dimension to the theory (since
then the metric has 15 independent components, 10 belong to the four dimensional
metric and one is a diagonal term, altogether 15− 10− 1 = 4 components).

Kaluza’s theory is based upon three postulates[4]:
(1) Spacetime is five dimensional and the metric satisfies the five-dimensional

vacuum Einstein field equation:

ĜAB = 0

where ĜAB = R̂AB − 1
2 ĝABR̂ is the five-dimensional Einstein tensor.

Throughout this section, we denote five dimensional tensors with a hat,
e.g. ĜAB is the five dimensional Einstein tensor, vs. Gab which is the four
dimensional part of the Einstein tensor. Aside from that, capital Latin
letters run over 0-4 and non-capital Latin letters run over 0-3.

(2) The metric has the following form:

ĝAB =
[
gab + φ2AaAb φ2Aa

φ2Ab φ2

]
where gab is the 4-dimensional metric we perceive in four dimensional space-
time, Aa is the electromagnetic 4-potential and φ is some scalar field (called
the ’radion’ or the ’graviscalar’. Notice that this is not the scalar potential
of the electromagnetic field!)

(3) The cylinder condition:
Since we observe nature as having three spatial dimensions, Kaluza tried to
explain adding the extra spatial dimension to his theory by requiring that
nature is independent of the fifth coordinate. Therefore all derivatives with
respect to the fifth coordinate are zero, namely ∂

∂x4 = 0.
It should be emphasized that one of the most beautiful aspects of Kaluza’s theory
is that spacetime in five dimensions is actually empty (there is no stress-energy ten-
sor). Matter, energy and radiation as we interpret them are just the manifestation
of empty five-dimensional spacetime, as we will see next.
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The inverse five-dimensional metric is

ĝAB =
[
gab −Aa
−Ab 1

φ2 +A2

]
where gab is the inverse four-dimensional metric, and we raised the index of the
electromagnetic using the four-dimensional metric, namely Aa = gabAb. Next we
compute the five-dimensional Christoffel symbols by the formula (remembering the
cylinder condition)

Γ̂CAB =
1
2
ĝCD (∂AĝBD + ∂B ĝAD − ∂DĝAB)

and then the five-dimensional Ricci tensor by

R̂AB = ∂C Γ̂CAB − ∂BΓ̂CAC + Γ̂CABΓ̂DCD − Γ̂CADΓ̂DBC

If we separate the vacuum five-dimensional Einstein field equation R̂AB = 0 to
the ab components, a4 components and the 44 component, we obtain the following
equations[4]:

Gab =
φ2

2
Tab −

1
φ

(∇a (∂bφ)− gab�φ)

∇aFab = −3
∂aφ

φ
Fab

�φ =
φ3

4
FabF

ab

whereGab = Rab− 1
2gabR is the four-dimensional Einstein tensor, Tab = 1

4gabFcdF
cd−

F caFbc is the electromagnetic energy-momentum tensor, and Fab = ∂aAb − ∂bAa is
the tensor for the electromagnetic field. Kaluza set φ = 1, and then we can see that
the first two equations are nothing other than the Einstein equation and covariant
Maxwell’s equations:

Gab =
1
2
Tab

∇aFab = 0

The four-dimensional matter (or at least electromagnetic radiation) arises purely
from the geometry of empty five-dimensional spacetime!

Though this seems as a pure miracle, this formulation does have a few inherent
problems. Requiring φ to be constant is consistent with the third field equation only
when FabF ab = 0, a condition which the electromagnetic field does not necessarily
satisfy. If we allow φ to vary then this issue is resolved. Nevertheless, the scalar
field φ was one of the reasons that Kaluza’s theory was eventually abandoned, as
its effect could not be observed. In the next section we discuss Klein’s attempt
to explain the fact that Kaluza’s theory is independent of the fifth dimension by
’compactifing’ the fifth dimension.

5.2. Oskar Klein’s hidden dimension. The contrived nature of Kaluza’s as-
sumption, that all physical quantities do not depend upon the fifth dimension seems
very ’unnatural.’ Klein arrived on the scene in 1926, when a lot of excitement sur-
rounded the birth of quantum mechanics. Since most quantum mechanical effects
seem to appear on very small scales, Klein tried to explain this in his theory. Klein
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assumed that the fifth coordinate in Kaluza’s theory is a length-like one, and as-
signed to it two properties[5]:

(1) It has a circular S1 topology, and is thus also compact.
(2) It has a very small scale (i.e. the ’radius’ of the fifth dimension as a circle

is very ’small.’)
The first property implies that all quantities become periodic in the fifth dimension,
and thus may be written as a Fourier series:

gAB
(
x0, x1, x2, x3, x4

)
=

∞∑
n=−∞

g
(n)
AB

(
x0, x1, x2, x3

)
ei

n
r x

4

AA
(
x0, x1, x2, x3, x4

)
=

∞∑
n=−∞

A
(n)
A

(
x0, x1, x2, x3

)
ei

n
r x

4

φ
(
x0, x1, x2, x3, x4

)
=

∞∑
n=−∞

φ(n)
(
x0, x1, x2, x3

)
ei

n
r x

4

where r is the scale parameter (the ’radius’ of the fifth dimension) and the super-
script (n) refers to the n-th Fourier mode. In quantum mechanics the momentum of
a wave function of the form eikx is of the order of k, and thus Klein concluded that
also in our case the momentum in the x4-direction is of the order of |n|r . By the
second property of the fifth dimension, since r is very small the x4-momentum of
all modes other than n = 0 will be so large as to put it beyond the reach of current
experiments. Therefore the only mode that will actually be observable is n = 0,
which is independent of the fourth coordinate. This gives a possible explanation
for the independence of the fifth coordinate x4 in Kaluza’s theory.

As mentioned, at the time of Kaluza-Klein theory, physicists were much more
interested in probing the microscopic world with the new quantum mechanics and
didn’t pay any significant attention to Kaluza-Klein theory. Furthermore, the extra
scalar field φ that appears in the theory caused a few predictions of Kaluza-Klein
theory that were in conflict with experimental data. This led to the abandonment
of Kaluza-Klein theory in favor of quantum mechanics, though by the early 1970s
the interest in the theory led to the development of more modern extra-dimensional
theories, such as string theory, who also tried to unify gravity and electromagnetism,
together with the strong and weak nuclear interactions. Up to the present time,
there is no accepted theory that unifies gravity and electromagnetism.

6. The Future

As we saw in the previous sections, gravity and electromagnetism have many
similar properties. However, at present one of the most serious problems in the-
oretical physics is interrelating these two forces. The same problem appears in
experimental physics as well: finding an experimental evidence for an interchange
between the electromagnetic and gravitational field, just as in the case of the elec-
tric and magnetic fields. In fact, even the great experimentalist Michael Faraday
spent more than 11 years trying to show such a relation between the two fields
unsuccessfully [1].

My personal belief is that gravity is an effect of the electromagnetic field, just as
the electric field appears as a magnetic field depending on the frame of reference.
The electromagnetic field seems to be more fundamental as it can both attract
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and repel, while gravity only attracts. On the microscopic scale of an atom the
gravitational field seems to be completely irrelevant to the motion of particles, as
the electromagnetic field is 39 order of magnitudes stronger. These two facts and
our inability of measuring the gravitational field on such a small scale, seem to me
as if the gravitational field might just be the residual effect of some mutual influence
between negative and positive charges in the atom.

I’ll conclude by an optimistic note from Faraday’s dairy, after his failure in
detecting such a gravelectric effect, which strongly describes my own opinion about
the subject[1]:

’It was almost with a feeling of awe that I went to work, for if the hope
[of interrelating gravity and electricity] should prove well founded, how great
and mighty and sublime in its hitherto unchangeable character is the force I
am trying to deal with, and how large may be the new domain of knowledge
that may be opened up to the mind of man... [The experimental results] do
not shake my strong feeling of the existence of a relation between gravity and
electricity... ’
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