- 1. Perform the following calculations and simplify your final answer:
 - A. (2+3i)(1-2i)

B. $\frac{5}{3-2i}$

C. $(1+i)^{20}$

- 2. Express $e^{(3+4i)t}$ in the form a + bi.
- 3. Express $-\frac{5}{2} + \frac{5\sqrt{3}}{2}i$ in the form $Re^{i\theta}$.

In problems 4 and 5 you will derive some formulas by computing something in two different ways, expressing each answer using Euler's formula, and then equating the results. The final step uses the fact that a + bi = c + di tells us that a = c and b = d.

- 4. A. Use Euler's formula to rewrite $e^{i3\theta}$.
 - B. Use $e^{i3\theta} = (e^{i\theta})^3$ to rewrite $e^{i3\theta}$ in the form a + bi.
 - C. Set your answers to parts A and B equal to each other to derive two famous trig identities.
- 5. A. Use u-substitution to evaluate $\int e^{(a+bi)x} dx$. Rewrite your answer using Euler's formula.
 - B. Rewrite $\int e^{(a+bi)x} dx$ as the sum of two integrals using algebra. (Hint: $e^{(a+bi)x} = e^a \times e^{bxi}$)
- C. Set your answers to parts A and B equal to each other to derive formulas 8 and 9 from the integral table.