Use calculus to find the critical points in each problem. Determine if the critical points are local maximums or minimums.

1. $E(\theta)=\frac{\left(\theta-\mu \theta^{2}\right)}{\mu+\theta}$ Assume μ is a positive constant and $\theta>0$.
2. $E(x)=\frac{k x}{\left(x^{2}+r_{0}^{2}\right)^{3 / 2}}$

Assume k is a positive constant.
3. $\theta(D)=\arctan \left(\frac{2 \alpha}{D}\right)-\arctan \left(\frac{\alpha}{D}\right)$. Assume α is a positive constant and $D>0$.
4. $S=\frac{7 k}{x^{2}}+\frac{k}{(20-x)^{2}}$. Assume k is a positive constant and $0 \leq x \leq 20$.

